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A complex-valued Borel measure w on C is called n-reducible if there is a
quadrature formula with n complex nodes which is exact for all polynomials
of degree < 2n — 1. A criterion of n-reducibility is given on the base of
a solvability criterion for a complex power moment problem. The latter is
an analytic version of a Sylvester theorem from the theory of binary form
invariants. The 2-reducibility of measures w with |suppw| = 3 is closely
related to the modular invariants of elliptic curves.-

Dedicated to the 100th anniversary of the birth of Naum Il’ich Akhiezer

Let w be a Borel complex-valued nonzero measure on C and let n be a positive
integer. Suppose that

i1l < oo v

and denote by Pa, 1 the linear space of all polynomials of degrees < 2n — 1. We
define a Gauss type quadrature formula of degree 2n — 1 for the measure w as a
relation

/f dw=Y"ref () | E€Pom, )
k=1

with some pairwise distinct nodes zi1,...,2, in C and some nonzero complex
coefficients r1,... ,7,. The classical Gauss quadrature formula is
1/ =
3 10— > s ). f € P Q)
—1 =
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Gauss type complex quadrature formulae

where zj are the roots of the n-th Legendre polynomial and pj are some positive
(uniquely determined) coefficients. In fact, a similar formula exists for any w such
that

w >0, suppw C R, |suppw| > n. (4)

In particular, this exists for all n if the support of w is infinite. The point is that
the quadrature formula (2) is equivalent to the system of equations

n
Zrkzi:/zjdw, 0<j<2n-1 (5)
k=1

But for given real aj, 0 < j < 2n — 1, the system

n
Zrkzizaja ,OS]S?'I’L—]., (6)
k=1

has a solution {(r, )} with pairwise distinct 2 € R and 7 > 0 if and only if
the Hankel form

n—1
H(éy,- o 560) = Y ajpgi& (7)

7,0=0

is definite positive. Indeed, (6) is a power moment problem with respect to the
measure p with suppp = {2z }] and p {zx} = r, 1 < k < n. The above mentioned
criterion is a truncated version of the classical one, see [1, Ch. 2, §1]. It remains
to note that for

aj:/zjdw, 0<j<2n-—1, (8)

the form (7) turns into

2

n—1 )
Hot) = [[ X | aw (9)
=0

which is positive definite under conditions (4). The complex version of the system
(6) was introduced by Sylvester [7] in the context of the binary form theory. Later
Ramanujan independently solved this system in the short note [4]. However, these
remarkable papers do not contain an explicitly formulated solvability criterion.
Nevertheless, it turns out that a criterion can be extracted from [7]. It was done
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in 3, Section 5| written in the language of the modern invariant theory. Below
we formulate and prove the "Sylvester theorem" in our analytic context.
To this end it is convenient to reformulate (6) as a power moment problem

/zjdu:aj, 0<j<2n—1, (10)
with respect to a complex-valued measure pu, suppyu C C, such that

|suppp| = n. (11)

Theorem 1. Given the complez numbers a;, the power moment problem (10)
has a solution satisfying (11) if and only if the polynomial

ag ayr ... An—1 Qp,
ar  az ... an apt1
Guz)=| . . ... . (12)
ap—1 Gn ... 0G2p-2 0Q2p-1
1 z P

has exactly n pairwise distinct roots.

In particular, this means that G,, # 0 and, moreover, deg G,, = n, i.e., the
Hankel determinant

ag ar ... Anp—1
a a e Q.
An _ 1 2 n (13)
an-1 Gn ... QG2p—2

is different from zero. Indeed, A, is the formal leading coefficient of G (2).

Proof. "Onlyif". It follows from (10) and (12) that
/sznduzo, ,0<j<n—1, (14)

since the integral (14) is equal to a determinant where some two rows coincide.
Hence,

/fGn du=0, f€Pur. (15)
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Note that each function on M = supppy is the restriction to M of its Lagrange
interpolation polynomial. Therefore, (15) implies

Gn|suppu = 0. (16)

Since deg G, < n and |suppu| = n, we conclude that either G,, = 0 or suppy is
the set of roots of G,,. The latter is just what we need. The former is impossible
as we prove below.

Suppose to the contrary that G,, = 0. Then A,, = 0 and, therefore, the linear
system

n—1
Z’Yiaf’i—f—j:O, 0<7j<n-1, (17)
=0

has a nontrivial solution (v;)# !. By (10) the system (17) can be rewritten as
/ZJQ(Z)dMZO, 0<7j<n-1,
where
n—1 )
g(z) = Z'yizz Z 0.
=0

Hence, g|suppy = 0 as before but now deg g < n, the contradiction.
"If". Let N be the set of roots of G,,(z). By assumption, |N| = n. Consider
the n-dimensional linear space X, of measures p such that suppy C N, i.e.,

G |suppy = 0. The formula
) n—1
Tp = (/zj d,u)
0

defines a linear mapping 1" : X — C". Since KerT' = 0, we have ImT = C", in
particular, there exists a measure p such that suppy C N (so that |suppu| < n)
and

/zjduzaj, 0<j<n-1. (18)

Setting
cj:/zjdu, 0<j<2n—-1,

we already have ¢; = aj, 0 < j <n — 1. Further,

n
> _gicisj =0, 0<j<n—1,
1=0

Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 2 131



Yuri I. Lyubich

where g; are the coefficients of G, (z), in particular, g, = A, # 0. On the other
hand,

n

Zgiai—}—j:()a 0<j<n-1,

1=0
by standard properties of minors applying to those which come from the devel-
opment of (12) along the last row. Thus, both sequences (¢;)a" ' and (a;)2" !

satisfy the same linear difference equation of order n and the same initial condi-
tions. Hence, they coincide, i.e, (18) extends to (10). It remains to prove that

|suppu| = n.
To this end we introduce the polynomial

p
hz)= [ (z=¢=>_Xz, p=Isuppu| <n,
=0

(€Esuppp

and consider the subspace M C P, of those polynomials of degrees < n which
vanish on suppu. Obviously, M = hP,_, so, dimM =n —p+ 1 > 1. On the
other hand, if a polynomial
n
a(z) = Z ;7"
i=0

belongs to M then
/zja(z) du=0, j>0,

since a|suppy = 0. A fortiori,
n

Zaiaiﬂ' =0, 0<j<n.
=0

This is a homogeneous system of linear equations for (a;)§ of rank > n since
A, # 0. Hence, dimM < 1so,dimM = 1. Thus,n—p+1=1,ie,p=n. =n

In the course of the above proof we have found that suppy must coincide with
the set of roots of G,,(2). Let the latter be {z;}} . Then the Vandermond system

n
Zrkzizaj, 0<j<n-1, (19)
k=1

uniquely determines the values r, = p {z;}. As a result, we obtain

Theorem 2. If the moment problem (10) with condition (11) is solvable, then
the solution is unique.
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In addition, let us remark that G,(z) is the n-th pu-orthogonal polynomial as
(15) shows. However, in order to get the intermediate p-orthogonal polynomials
{Gk(z)};“1 of degrees 1,2,... ,n — 1 we have to impose the extra assumptions
A #0,1 <k <n—1, on the principal minors of A,,. Let us give a simple
illustrating example.

Example 3. Forn=2and ag =0, a1 =1, as =2, a3 = 0 we have Ay = —1
and Gg(z) = —2%+2z—4. We are in conditions of Theorem 1. The corresponding
measure p is supported on the set of roots {1 +iv3,1 — zx/g} of G2(z). However,
A; =0, so that deg G; = 0. [ ]

Now we pass to a construction of the quadrature formula (2). The latter is
equivalent to the power moment problem

Jrao= [ran, 1P, (20)

for a complex—valued measure p on C under condition (11).

Definition 4. A measure w is called n-reducible if a quadrature formula (20)
with |suppp| = n does ezist.

By Theorem 2 if w is n-reducible then the corresponding quadrature formula
is unique.
It is easy to see that a measure w is 1-reducible if and only if

/ dw # 0. (21)

In order to formulate a general criterion of n-reducibility we introduce the
w-inner product

(F1 f),, = /f1f2 dw (22)

of fi € Pi, fo €Pr (i+k <2n—1). In particular, (22) is defined on the space
Pn—l-

This complex-valued inner product may not be real even for f; = fs. Also,
it may degenerate, which means that (fi, f2), = 0 for some f; # 0 and all fo.
For instance, if the first 2n — 2 power moments of w are equal to zero, then the
w-inner product vanishes on P,_1.

Lemma 5. If the w-inner product on Pp_1 does not degenerate then there
exists a polynomial G(z) of degree n which is orthogonal to Pp—1. This polynomial
s unique up to proportionality.
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P roof. The nondegeneracy means that if f € P, 1 and f is w-orthogonal
to P,—1 then f = 0. Equivalently, this means that the homogeneous system of
linear equations

(faz])w:(), 0<j<n—-1, (23)

has the only solution f =0 in P,_1. Hence, the corresponding nonhomogeneous
system

(g,ZJ)w:CJ, OSJSn_]-a (24)

is uniquely solvable for any sequence (c;)§ ™"

Now we consider G(z) = 2™ + g(z) where g € P,_1. Then G is orthogonal to
Pp—1 if and only if G satisfies (24) with ¢; = — (2", zj)w ,0<j<n-—1. Hence, a
unique G' L P, 1 does exist. Later on we denote it by Gy, so that G, L Pp 1
and the leading coefficient of G, is equal to 1 (G, is a monic polynomial). m

Theorem 6. A measure w is n-reducible if and only if the w-inner product
on Pp_1 does not degenerate and the polynomial G, ., has no multiple roots. The
corresponding Gauss type quadrature formula is unique.

Proof "Onlyif'. By definition of n-reducibility, the moment problem
(10) with

ajz/zjdw, 0<j<2n-1, (25)

has a solution y, [suppu| = n. Accordingly,

(f1, f2), = (f1, fo)u (26)

for any polynomials fi, fo with deg fi1+deg fo < 2n—1. In particular, for f € P,
the system (23) can be rewritten as

/fzdeZO, 0<j<n-—1,

which yields f = 0 as we already know. Hence, the w-inner product on P,,_; does
not degenerate.

By Lemma 5 the n-th p-orthogonal polynomial G, (z) associated with pu is
proportional to Gp (2). The leading coefficient A, of G,(z) is not zero by The-
orem 1. Hence,

Gn(z) = AnGn,w(z) (27)
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and, applying Theorem 1 again, we conclude that the polynomial Gy, ,,(z) has no
multiple roots.
"If". Consider the difference

R(2) = Gp(2) — AnGrw(2)

where G (z) and A, are defined by (12) and (13) respectively with a; coming
from (25). Then R € P,,_; and

/sz(Z)dMZO, 0<j<n—1,

by (14) and by definition of G, . Hence, R = 0 since the w-inner product does
not degenerate. Thus, we obtain (27) again. Moreover, A,, # 0 since

Aj+j = (ziazj)wa 0 S ’L,j S n-— 15 (28)

so that A, is just the Gram determinant of the nondegenerating w-inner product.
As a result, G, (2) is a polynomial of degree n without multiple roots. It remains
to refer to Theorem 1 in the inverse direction.

The uniqueness follows from Theorem 2. ]

In fact, if w is m-reducible then the nodes z ... ,z, of the corresponding
quadrature formula are the roots of the polynomial Gj,(z), ie., of the
n-th w-orthogonal monic polynomial. The coefficients 1, ... ,7, are uniquely
determined by the formula

In the classical real-positive case (29) is the well-known Cristoffel formula. Let
us repeate the classical proof in our context. The point is that

_ Gnw(2)
G w(2k) (2 — 2k)

Li(2) (30)

is a polynomial of degree n — 1 such that Ly(z;) = d,i (a basis Lagrangian
polynomial). Applying (20) to f = L2 we get (29) since

Ty =p{zK} = L%du:/L%dw.

Certainly, (29) has to be called the Cristoffel formula as well.
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Corollary 7. If a measure w is n-reducible then

|supp w| > n. (31)

Proof  If [suppw| = m < n then the minimal vanishing on suppw
polynomial belongs to P,_1. On the other hand, it is w-orthogonal to P,_1. This
is impossible since the w-inner product does not degenerate. [

A measure w on C is called totally reducible if it is m-reducible for all n
under restriction (31). For instance, so is any nonnegative measure on R. More
generally, let T' be a simple smooth arc in C and let ¢(z) be a nonzero regular
analytic function in a simply connected domain D D I'. Consider the segment
I = [wy,ws] where w; and wy are the endpoints of ', w; # wg. Assume that
I C D and ¢(z) > 0 for z € I. Then the measure dw = ¢(z)dz|T" is totally
reducible. (In particular, so is dz on I'. ) Indeed,

JECIC dz—/f (32)
I

for all polynomials f, in particular, for f € Pa,—_1. It remains to pass from I to
[0,1] by parametrization z = (we — w1)t +wy, 0 <t < 1.

In contrast, if I is a simple smooth closed contour, ¢(z) is a regular analytic
function inside of I' and ¢(z) is continuous up to I' then dw = ¢(z)dz is not
n-reducible for each n. Indeed, now the w-inner product vanishes in P,_1.

The situation becomes much more interesting if ¢(z) has a finite set of single
poles ( and no other singularities) inside of I". Let the poles be z1,... , 2z,. Then

/f z)dz = 2mi Zf zk)Res[¢(2)] =2, (33)

k=1

for all polynomials f again. The measure ¢(z)dz|[' turns out to be n-reducible.
However, it is not m-reducible for m > n. This is a particular case of the following
situation.

A quadrature formula for a measure w is called universal if it is valid for all
polynomials. For example, so are (32) and (33) under the conditions we have
imposed there.

Proposition 8. If a measure w admits an universal quadrature formula with
n nodes then it is not m-reducible for m > n.

[raw= [rau (34)

Proof Let
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for all polynomials, [suppu| = n. Suppose to the contrary that

/fdw _ /fdp, € Pomt, (35)

where m = |suppp| > |suppu|. Comparing (35) to (34) we see that u is m-reducible
which contradicts Corollary 7. ]

Corollary 9. The number n of poles of ¢(z) in (33) is the mazimal m such
that the measure ¢(z)dz|T" is m-reducible.

The problem arises: is (83) m-reducible for some m < n?

In the case of negative answer the residue formula (33) is the only Gauss type
quadrature formula of degree 2n — 1 for the contour integral. Since the poles and
the residues of ¢(z) can be taken arbitrarily, our problem can be posed in the
following more abstract form.

Problem A. Given a measure w, |[suppw| = n+ 1 and let m < n. Is w
m-reducible? In particular, is w totally reducible?

Of course, a formal answer is contained in Theorem 6 with m in role of n.
However, sometimes it can be given in a more concrete form.

Let us study the problem of 2-reducibility for |suppw| = 3, say, suppw =
{z1,22,23}. To do the situation purely geometric we set all w{z;} =1, i.e., we
will consider only uniform measures. We call a triangle {21, 22, z3} reducible if the
corresponding uniform measure is 2-reducible. Otherwise, the triangle is called
irreducible.

Since our problem is complex affine invariant, we can normalize it to z; =
0,20 = 1,23 = (. Thus, the 2-reducibility depends only on the parameter (
running over C\ {0,1}. In terms of initial nodes we have

Z3 — %1

= ) 36
(= (36)
Under all possible permutations of z1, z9, z3 the ratio { takes six values
1 1 ¢ (-1
ga R 1- Ca ’ ’ (37)
¢ 1-¢¢-1" ¢

which we call adjoint to (. Actually, all of them are adjoint to each of them. (This
is the so-called anharmonic 6-tuple.) The reducibility of the triangle {0,1,(} is a
common property of the values (37). Moreover, if some triangles {z1, 22, 23} and
{7}, 24,24} are similar then the ratio

!/ !
_ZABA

CI

! !
%9 — A
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is equal to one of values adjoint to (, and wice versa. Therefore, any provi-
sional answer to our question depends only on the similarity class of the triangle

{Zla 22, 23}.
Remark. Two different expressions (37) take the same value if and only if

]. s} s}
¢=-1, ia 2, es, e 3. (38)
Actually, % and 2 are adjoint to —1 and e~ is adjoint to e . We call the values
(38) exceptional.
By Theorem 6 a measure w with |suppw| = 3 is not 2-reducible if and only if
its power moments

ajZ/zjdw, 0<j<3,
are such that

ap ai

Ag = =0 (39)
ar a
or the quadratic polynomial
ap a; a2
GQ(Z) =] a a2 as (40)

has a double root. We have
ag=3,a; =1+, 1<j<3,
since w is uniform. Therefore, (39) takes the form
(?—(+1=0, (41)
so that

C1+i/3 ym

(== =t (42)

which, in turn, means that the triangle {0,1,(} is equilateral.
Now we have to equate the discriminant of Ga(z) to zero, i.e.

2

ap az | ap a1 ap a2 -0
a; as a; a2 as ag )
According to (40) we obtain the equation
D(¢) = 4¢5 —12¢% +21¢* —22¢ +21¢2 —12¢ +4 = 0. (43)
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Note that the exceptional values (38) do not satisfy (43). Hence, if { is a root
then the set of roots consists of those six different numbers which are adjoint to
¢ (including ( itself). Since (43) is a recurrent equation, one can transform it in
a cubic equation by division on ¢® and compatible substitutions

1 1

=1 =2+ 5 =" -3 (44)

Ctr=n+ &3

¢ ¢
As a result,
dn* — 120> +9n+2=0.
Setting n = 1 — /2 we obtain the equation
2 -36—-6=0.

One of its roots is

£:</3+\/§_|_ \3/3—\/§z2.3553. (45)

Hence,

n:l—%<€/3+\/§+ </3—\/§>z—0.17765 (46)

and then we find

_n, . n? :
¢=C1=g +i\[1— 7 ~ —0.0888 + 0.996 (47)

as one of roots of (43). Other roots are adjoint to (; as aforesaid. Obviously,
|C1] = 1 so, the triangle A = {0,1,(; } is isosceles and its angle between the equal
sides is

arg(p = g + arctan ———— ~ 0.5283. (48)

Vi

Thus, we prove

Theorem 10. A triangle {z1, 22,23} is irreducible if and only if it is either
equilateral or isosceles with the angle (48) between the equal sides.

Corollary 11. Let
0(z) = (z — 21)(z — 22) (2 — 23)

and let T' be a contour surrounding the points z1, z2,z3. The residue formula

, 3
[1e5 2 4z =2mi Y (e (49)
T k=1

0(z)

is the unique Gauss type quadrature formula of degree 3 for the integration in
(49) if and only if the triangle {z1, z2, 23} is equilateral or similar to A.

Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 2 139



Yuri I. Lyubich

In particular, it is applicable to

1 2dz f(1)+ f(e) + f(€?)
2mi / 1) 23 —1

= 3 (50)
|z|=R

where ¢ = e%, R>1.

The anharmonic 6-tuple (37) is an orbit of ( € C\ {0,1} under action of
the group A of linear fractional transformations generated by o1(() = % and
02(¢) = 1 — (. This group of six order is called the anharmonic group. It is
isomorphic to the symmetric group Ss.

The equation (43) is A-invariant. Show that A is its Galois group over the
field Q of rational numbers.

Since all roots of (43) are rational functions of one of them, it is sufficient to
show that (43) is irreducible over Q. Suppose to the contrary. The polynomial
D(¢) must have a quadratic factor with rational coefficients because of absence of
real roots. The roots of that factor must be complex conjugate and their common
real part must be rational. The only such pair of roots consists of 1/(1 — (1) and
its conjugate. Indeed, the real parts of (; and 1 — (; are irrational according to

(47)&(46). The same is true for 1/¢; = ¢; and (1 —1)/¢; =1 — {; while

1 1= 1 1-¢

1-¢  1—=G? 2 1—-ReG
1 Im¢; |\ 1 2417,
2(1+1—ReC1Z)_2(1+ 2—772). (51)

However, the square of modulus of the root (51) is equal to 1/(2 — n) so, it is
irrational hence, 1/(1 — (1) cannot satisfy a quadratic equation over Q.
It is easy to describe all A-invariant equations of six degree.

Proposition 12. The general form of A-invariant monic algebraic equations
of six degree is

(C3—C+1)3—2Z7JC2(§—1)2 —0, JeC. (52)

(The normalizing coefficient % will be motivated later.)

Proof  The A-invariance of (52) is obvious. Conversely, let f({) = 0
be an A-invariant monic algebraic equation. If (7 is its root then all its adjoint
values are roots as well. The substitution of {; into (52) determines a value of J.
({1 # 0,1, otherwise, (1 could not be a member of an anharmonic 6-tuple.) If (3
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is not exceptional then the equation (52) with the above defined J has the same
six roots as f(¢) = 0. It remains to consider the exceptional cases.
1) (1 = —1, other adjoint values are % and 2. Hence,

£Q) = €+ 1)(C - € ~2)9(0)

where ¢(({) is a monic polynomial such that g(¢) = 0 is an A-invariant equation
of third degree. In particular, C3g(%) = g(¢) so, g(—1) = 0 and then g(3) = 0,
g(2) = 0. Finally,
1
9(0) = C+ D~ 1) ~2)
and .
FO=(C+D)*C -3¢ -2)*

The equation f(¢) = 0 comes from (52) with J = 1.
2) (; = e’s, other adjoint value is e~ 3 so,

F(Q) = (¢* = ¢+ 1)h(C)
where deg h = 4. The equation h({) = 0 is A-invariant. The roots of the latter

must be exceptional again and they can not be —1,%,2 since there is no

an A-invariant equation of degree 1. Hence, h(e*3) =0, i.e.
F(¢) = (¢* = ¢ +1)%(0),
dege = 2,¢e(¢) = 0 is A-invariant. Finally, e(¢) = ¢2 — ¢ + 1 and

FO="-¢+1)7°
which corresponds to J = 0 in (52). |

In contrast to the ratio ¢ the quantity

P (Gl Vi
(-1

is invariant with respect to permutations of the vertices z1, z2, 23 S0, J is a function
of an unordered triangle. For the equilateral triangle J = 0. For the triangle A
we have J = §. (Compare (52) to (43).)

The remarkable relation (53) is well known in the classical theory of elliptic
functions, see [2, Section 21|, where J = J(7) and A = A(7) are some important
modular functions, Im7 > 0. In particular,

(53)

3
g
. (54)

J ="
93_2793
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where

1
g2(T) =60 > ———, g3(r) =140 Z
oo (P Ha7) i B+ ar)®

Geometrically, the points p+ g7 € C (p,q € Z) are the nodes of the lattice L,
generated by the vectors 1 and 7. The equation

2 — tut — gou — g3 (55)

defines an elliptic curve in C? corresponding to the lattice L,. The orbit of a fixed
7 under the action of the modular group SLy(Z) yields a class of equivalent lattices
which determines a class of isomorphic elliptic curves. The modular invariant
J(7) just distinguishes these classes. (For some reasons it can be expedient to
replace J by j = 26-33J = 1728.J.)

The modular function A conformally maps the standard fundamental domain
of the modular group onto C\ (—o0,0) U (1, 00), see [2, Section 23]. The inverse
mapping is just that which Picard used proving his famous theorem on entire
functions.

Coming back to our modest problem we can say now that Theorem 10 refers
to two (up to isomorphism) elliptic curves with J = 0 and J = %, ie., j=0or
j = 25.3 = 192. Respectively, we have two elliptic curves in the standard form

27

27
2—4ud -1 (j=0); v* =4? +gutg (j =192). (56)

It is curious to find (or investigate) the lattices behind them.
In the case j = 0 we have the equation (1) = e3. A known root of that
is 7 = e3, see [2, Section 23]. In contrast, all T such that j(r) = 192 are

transcendental as it follows from the arithmetic theory of elliptic curves. Actually,
the same is true for all rational nonnegative values of j(7) except for

26.33 26.53 0, 23.33.113, 24.3%.53, 33.5%.17%. (57)

Indeed, let 7 be algebraic and let r be its degree over Q. Since Im7 # 0, we have
r > 2. If r > 2 then the number j(7) is transcendental according to a Siegel
theorem [6]. If » = 2 then 7 belongs to an imaginary quadratic extension K D Q,
in other words, the elliptic curve in question admits complex mutiplication. For
such curves the nonnegative rational values of j(7) are listed in (57), see [5].

For n > 2 the problem of n-reducibility of a measure w with |suppw| =n +1
requires a further investigation. Like the case n = 2 we say that a (n + 1)-gon is
n-reducible if so is the corresponding uniform measure. Below we present some
simple statements based on the necessary condition A,, # 0.
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Lemma 13. Let
suppw = {z}1T", w{m} =1, 1<k <n.

Then
o n—1 n+1 1
A, = det (/zzﬂ dw) =V2y ——
" i,j=0 ,;1 [’ (21)]?
where
n+1
p(z) = H(Z_zlc)a V= H (2x — 21)-
k=1 1<k<I<n+1

Proof Wehave

A, = det (Z Z?LJ) = det(AA")
k=1 i,j=0

where A =(28),0<i<n—1,1<k<n+1, A is transposed to A. In turn,

n+1
det(AA") =" Vi, Vi = det(2}) ks,

m=1
by the Binet—Cauchy Theorem. It remains to take into account that

[T —2)

k<l

Vm ==+ H (Zk - Zl) ==+ pl(zm)

k<l,k#m,l#m

Corollary 14. A (n+1)-gon {z}1" is not n-reducible if
n+1

1
2 ep

As an application we consider a regular (n + 1)-gon, for definiteness,

2mi

zkzsk, 0<k<n, ¢ =entl.

Then p(z) = 2" — 1, so that
n+1 n+1

1 _ 1 —2nk __
2 P e 2

By Corollary 14 and similarity of all regular (n + 1)-gons we have
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Proposition 15. Any regular (n + 1)-gon is not n-reducible.
The case n = 2 is contained in Theorem 10.

Corollary 16. The residue formula

1 2"dz . 1 "

2mi f2) 2l 1 p41
|z|=R

f"), R>1, (63)
k=0

is the unique Gauss type quadrature formula of degree 2n + 1 for the integration
in (63).

Proposition 15 can be generalized as follows.

Proposition 17. The union of regular (n + 1)-gons

2 =y, 1<1<m, (64)

18 not n-reducible.

Proof. Consider the polynomial
m
H w — wy)
=1

and then let
p(z) = q(z"*1).
The union of regular (n + 1)-gons in question coincides with the set of roots of
p(z). Taking a root (; of the I-st equation (64), we obtain all roots of all equations
(64) as
ap=GeF, 1<1<m, 0<k<n.

Hence,

_ 1 —2nk
Z[p/ ‘<n+1>z wlPZ

zlk

so, criterion (61) works again. ]

In conclusion we introduce the spectrum of reducibility of a measure w as
the set of m, 2 < m < |suppw|, such that w is m-reducible. We call a measure
w irreducible if its spectrum of reducibility is empty. For |[suppw| = 3 we come
back to the irredicibility in the former sense. Respectively, a (n+ 1)-gon is called
irreducible if so is the corresponding uniform measure.
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Proposition 18. Any regular (n + 1)-gon is irreducible.

Proof Wehave

= Jn+1 §=0 (mod(n+1)),
%= =1 herwi
=0 otherwise.

Hence, a; = 0 for 1 < j < m since m < n. We see that A, = 0 since its 2-nd row
vanishes. [ ]

This result includes Proposition 15 and provides that with a simpler argument.
Problem B. Is the set of irreducible (n + 1)-gons finite for every n?

As we know the answer is affirmative for n < 2.
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