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The classical representation problem for a meromorphic function f in
C", n > 1, consists in representing f as the quotient f = g/h of two entire
functions g and h, each with logarithm of modulus majorized by a function
as close as possible to the Nevanlinna characteristic. Here we introduce
generalizations of the Nevanlinna characteristic and give a short survey of
classical and recent results on the representation of a meromorphic function
in terms such characteristics. When f has a finite lower order, the Paley
problem on best possible estimates of the growth of entire functions g and
h in the representations f = g/h will be considered. Also we point out to
some unsolved problems in this area.
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Introduction

Let f be a meromorphic function (we write f € Mer) in the complex plane. At
the beginning of the last century the definition of the classic Nevanlinna charac-
teristic T'(r; f) and the Liouville Theorem on the growth of entire functions were
giving an one of first results on the representation of a meromorphic function as
the quotient of entire functions.
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The representation of a meromorphic function...

Theorem 0.1 (J. Liouville-R. Nevanlinna). A meromorphic function f
in the complex plane can be represented as the quotient f = g/h of polinomials g
and h, i.e.,

log(|g(2)| + [h(2)]) < O(logr), r— +o0,
iff
T(r;f) <O(logr), 7 — +00.

The classic Nevanlinna theorem on the representation of a meromorphic func-
tion f of bounded characteristic T'(r; f) < const, r < 1, in unit disk D as the
quotient of bounded holomorphic functions in ID can be considered also as one of
sources of our survey.

A first essential result for transcendental meromorphic functions follows im-
mediately from the Lindel6f theorem of the beginning of XX century (see, for
example, [Ru2], [GO]):

Theorem 0.2 (E. Lindel6f). A meromorphic function f in the complex
plane can be represented as the quotient f = g/h of entire functions g and h of
finite type for order p, i.e.,

log(lg(2)] + [h(2)]) < O(r*), 1 — +oo,

iff
T(r;f) <O(r"), r— 4.

Here we consider far-reaching generalizations of these classic results and give
a survey of basic and recent results on the problem of the representation of a
meromorphic function in C" as the quotient of entire functions in terms of various
characteristics. Also we point out to some unsolved problems in this area.

Let f € Mer in C* and

9 0.1
f h (0.1)

be a canonical representation of f as the quotient of entire functions g; and hy
which are locally relatively prime, i.e., at each point z € C*, where gs(z) =
h¢(z) = 0, the functions g and h are relatively prime in the ring of germs of
functions analytic at z. In C* such representations always exist [GR|, [H1]. Both
functions

uy = max{log |gs|,log |hy|} (0.2a)

or

1/2
ug = log(|g[* + [ns[?)" (0.2b)
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are plurisubharmonic on C". Consideration of these characteristic functions uy
is useful and natural, since uy is used to define the various types of Nevanlinna
characteristic in particular in the Shimizu-Ahlfors form etc. [GO], [HK], [Ko|,
[Ku2], [Kh4], [Sk1]-[Sk2], [St1]-[T4a].

A function g on C" is said to be circular if g(e?’z) = g(z) for all z € C* and
0 eR

First we introduce the circular Nevanlinna characteristic

2w
Ti(z) = % /Uf(ewz) o, eC", (0.3)
0

which is a circular plurisubharmonic function [Ku2|. For example, if f(0) =1 and
T¢(t;¢), t > 0, are the Nevanlinna characteristics (in the Shimizu-Ahlfors form for
the case (0.2b)) [GO]| of the family of the meromorphic functions f¢(w) = f(w()
of one variable w € C, where ( runs through the unit sphere S™ C C*, then
Tp(t:Q) < Tf(z), 2 = te!’¢. Equality holds if n = 1 or if g; and hy do not have
common zeros (n > 1).

Let L = (Lq,...,Lg) be a fixed simply ordered collection of complex vector
subspaces in C"* and C" is the direct sum of L. As usual, we write

C'=Li®--®L. (0.4)
Denote by R, the set of nonnegative numbers.
Let z € C* and
z=wi + -+ wg, wp € Ly, p=1,...k, (0.5a)
rp = |wp|, = (r1,...,r) €RE, (0.5b)

where |wp| is the Euclidean norm wy in L,. For every z € C" the representation
(0.5a) is unique.

If u(z) is a function on C", then we consider the function u also as the function
u(z) = u(wy,... ,wg) on the direct sum (0.4) under the notations (0.5). We keep
also the same notation u for u(ws,... ,wg).

We introduce Nevanlinna L-characteristic of f € Mer in the form

T, (7 f) =/---/uf<nc1,... ) ds (Cr) -+ ds®(G), 7 eRE,

S1 Sk

where the functions uy are defined in (0.2), and dsP) is the area element on the
unit sphere Sy, in L.
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The Nevanlinna L-characteristic can be defined also in the form

TL(F; f) — / ce /TJ?(TICI, .. ,’I‘ka) ds(l)((l) .. ds(k) (Ck) (06)
Sk

S1

It is easy to check that every Nevanlinna L-characteristic is defined by (0.1)—
(0.2) to within an additive constant.

The Nevanlinna L-characteristic gives the various variants of the classical
Nevanlinna characteristics of f in C*. So, if k =1 and L; = C" in (0.4), then we
get Nevanlinna characteristic T'(r; f), r > 0, by exhaustion of C" by balls rB”,
where B" is the unit ball in C*; if k =nand L1 =--- = L, = C in (0.4), then we
get Nevanlinna characteristic T'(7'; f), 7 € R}, by exhaustion of C* by polydisks
P"(7) ={z € C" : |lwp| = rp,p = 1,... ,n} with the preceding notations (0.5)
(see [St1]-[Ta], [Ku2], [Sk1]-[Sk2], [Kh4] for various variants of definitions of such
Nevanlinna characteristics).

Below we formulate the well-known and recent main results on the represen-
tation of a meromorphic function on C*, n > 1.

The author expresses deep gratitude to L.F. Krasichkov—Ternovskii for use-
ful discussion of this review and a correction of the text, and to M.L. Sodin,
A.A. Kondratyuk and Ya.V. Vasyl’kiv for a valuable information, and also to the
reviewer for helpful remarks.

1. The representation of arbitrary meromorphic functions

A continuous increasing nonnegative function A on R, is called a growth
function (see [RT], [MI2] and [Ku2]).

For n = 1 and for a meromorphic function f of finite A-type, i.e., satisfying
the condition

T(r; f) < const- A(r) +const, r >0, (1.1)
where A has either the slow growth, i.e., satisfies the condition
A2r) <O(A(r)), r— o0, (1.2)

or log A(expt) is convez, L.A. Rubel and B.A. Taylor [RT, Theorems 5.4, 3.5-6,
3.2] indicated (1968) a construction of entire functions g and h such that f = g/h
and

log(|g(2)| + |h(2)]) < AX(Br)+C, r=l2[>0, (1.3)

where A, B and C are constants.
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All conditions for A was removed for n =1 (1970-72) by J.B. Miles in [MI1],
[M12] (see also the original proof of J.B. Miles in [Ko, Ch. 4], [Ru2, Ch. 14]):

Theorem 1.1 ( L.A. Rubel-B.A. Taylor-J.B. Miles ). Every function
f € Mer in the complex plane C can be represented as the quotient f = g/h of
entire functions g and h such that

log(|g(2)| + [h(2)]) < AT(Br; f)+C, 1=z >0, (1.4)
where A, B and C are constants* .

Analogous results for functions in the half-plane and in the unit disk can be
find in [Mlt] and in [Beck] recp.

The following special case of the representation theorems was established for
n =1 in [G]] (1972):

Theorem 1.2 (A.A. Gol’dberg). Ewvery meromorphic function f in the
complex plane C can be represented as the quotient f = g1/g2 of entire functions
g1 and go without common zeros such that

logT(r;95) = o(T(r; f)), r—o0, k=12,

This theorem (for functions g¢; and go without common zeros) is, in
a certain sense, best possible (see also [Gl]). Further results in this direction
(without common zeros) can to find in [Sk3|, [Be2], [VSh], [VK].

Our last one-dimensional result [Kh13] (2001) is the following

Theorem 1.3 (B.N. Khabibullin). Let f be meromorphic function in the
complez plane. For each nonincreasing convez function e(r) > 0 in Ry entire
functions g and h in the representation f = g/h can be chosen so that the estimate

A
log(|g(2)| +[h(2)]) < ﬁT((1 +e(r) rif)+B., r=[z>0, (15
holds. Here A, and B. are constants depending on the function e(r) (but inde-
pendent of r).

In particular for 1+ ¢(r) = B > 1 in (1.5) the last Theorem 1.3 implies
the Rubel-Taylor-Miles theorem 1.1, and for &(r) =€ / (1 +7) in (1.5) with a
constant € > 0 we obtain the sharpening of the one-dimensional variant of Skoda
theorem 1.6 with (1+7) in place of (1+7)2 in (1.7). Besides the theorem 1.3 can be
essentially stronger than the Rubel-Taylor-Miles theorem or the one-dimensional

* The importance of such results for n > 1 was marked by W. Stoll in his book [St, p. 85]:
“Unfortunately the theorem of Miles [M12] has not been proved for several variables”.
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Skoda theorem if the Nevanlinna characteristic T'(r; f) has rapid growth and the
decreasing function &(r) is chosen in conformity with the growth of T'(r; f).

For n > 1 the first result on the representation problem for a special growth
functions A(r) = r? (that solves the problem of L.A. Rubel [Eh, Problem §]
(1968)) is apparently due to W. Stoll [St1, Proposition 6.1] (1968).

Let A(7") = X(r1,... ,mn), T € R%, be a positive continuous function which is
nondecreasing in each variable, and T'(7, f) < A(7), ¥ € R} . B.A. Taylor posed
the problem* [Ta, p. 470] (1968):

(TP) when can a meromorphic function f be represented as the quotient f = g/h
of entire functions g and h such that

log(lg(2)| + |h(2)]) < ANBF) +C, rj=|z|>1,1<j<n, (16)
where A, B and C are constants ?

He proved the following Theorem [Ta, Theorem| (1968):

Theorem 1.4 (B.A. Taylor). If A(7) is slowly increasing in each variable,
in the sense that

ATy, 2r,00,mn) K AjA(r, ... )

for some constant A; >0, 1 < j <mn, and T(7; f) < const - A(7) for all rj > 1,
1 < j < mn, then there are entire functions g and h such that f = g/h and (1.6)
holds for all r; > 1.

Further progress for meromorphic functions f in several variables and for the
characteristic T'(r; f), i.e. kK = 1, under special conditions on the behavior of A,
was made in [Kul], [Ku2, Propositions 7.3, 9.10] (1969-71):

Theorem 1.5 (R.O. Kujala). If there are constants ag (resp., a vanishing
function ag = ag(r), r = +00), a, b and R in Ry and py in N such that

/ M) t™P7 dt < agA(br)r™P + aX(bs)s™P

8

whenever r > s > R and pg < p in N (in particular, if \ satisfies the slow growth
condition (1.2)), then under the condition (1.1) the meromorphic function f in
C™ can be represented as the quotient f = g/h of entire functions g and h such
that (1.3) (recp., with a vanishing function A = A(r), r — +00) is valid.

* In the original, “ When is A the field of quotients of A 7"
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Except the Theorems 0.1, 0.2, 1.2, 1.3 and the mentioned result for A(r) = r”
from W. Stoll [St1], all these results were obtained by the Fourier series method
(see [Kol, [Ku2], [M12], [No], [RT]-{Ru2], [Ta]). This method was used first by
N.I. Akhiezer in [A] (1927) for the new proof the Lindelof theorem and later by
L.A. Rubel in [Rul] (1961) (see in this connection also [GO, P. 85-88]).

Using the O-problem method, H. Skoda [Sk1]-[Sk2] (1971-72) obtained the
following results (see also [St, Theorem 9.12]):

Theorem 1.6 (H. Skoda). For every constant € > 0 entire functions g and
h in representation f = g/h € Mer can be chosen to satisfy the estimates

log(|g(2)] + [A(2)]) < Cle;s)(1 + )" ' T(r + ¢ f) (1.7)
log(|g(2)| + [(2)]) < C(e, ) (log(1 +r?)*T((1 + €)r; f) (1.8)
for all 7 = |z| > s > 0, where C(e, s) is a constant depending on € and s.

It should be noted [St, p. 295] that the pair (g,h) in the Theorem 1.6 can
have a common divisor, can depend on € but can not depend on s, and can be
different in (1.8) from the pair chosen in (1.7). The case (1.7) is good for rapid
growth, the case (1.8) is good for slow growth.

An analysis of these results indicates a definite rift between the cases of slow
and rapid growth of the majorants A or of the characteristics T'(+; f), both in
methods (the Fourier series method in the Theorems 1.1, 1.4-1.5 and the 0-
problem method in the Theorem 1.6) and the estimates and conditions on A or
T(-; f). Our balayage (or sweeping out) method (1990-93) enables us to get rid
of this rift and yields results in a complete form.

To be more specific, first this balayage method was applied for a new short
nonconstructive proof of Rubel-Taylor-Miles theorem 1.1 in [Kh1, § 3] (1991).
The improvement of this method for n = 1 made it possible recently to prove the
Theorem 1.3. In our articles [Kh2|, [Kh4| we established for functions of several
variables the following results that are, in a certain sense, extreme relative to the
Nevanlinna characteristics T'(r; f), r > 0, and (0.3).

Theorem 1.7 (B.N. Khabibullin). Let f € Mer, n > 1. Then
(T) [Kh2, Theorem 1.3], [Kh4, Theorem 5| (1992-93).

For each constant € > 0 the function f can be represented as the quotient
f= %, g and h are entire functions, (1.9)

such that
log(|lg(2)| + |h(2)]) < AT((1+e)r; f) +Cc, T=12[>0;  (1.10)
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(Tc) [Kh4, Theorem 4] (1993).

Under the conditions T§(z) < A(z), z € C", f(0) = 1, where the function
A is circular continuous positive increasing on all rays with origin at 0 and
satisfies the following two Hormander conditions [H2]:

(L) log(1+|z]) <O(X=z)) as |z| = +o0, and

(H) for any number € > 0 there exist positive constans ci,ca,c3,cq4 Such
that

|z — (| <exp(—c1A(z) — c2) = M) < esA((1+€)2) + e, z€C,

or

(ﬂ) for any € > 0 there exist positive constants o, c1, and co such that
lz—( <o = M) <arM(l+¢€z)+c, zeC (1.11)

for any € > 0 the function f can be represented as a quotient (1.9) such
that

log(lg(z)| + [h(2)]) < AA((1+€)2) +Ce, z€C, (1.12)

where under the condition (1.11) functions g and h can be chosen so that
9(0) = h(0) = 1.

Here A. and C. are constants depending on €.

Besides the fact that the extra conditions on the growth function A was re-
moved in the Theorem 1.7 (Part (T)), it also refines the Theorems 1.1, 1.5 and
1.6. For example, the constant B in (1.3) and (1.4) is replaced by a constant
1+¢€ > 1 arbitrary close to 1, and in (1.7) and in (1.8) it is possible to remove the
power factor before T'(+; f) if in (1.7) r + € is replaced by (1 + €)r, where € > 0.
Following Gol’dberg [Gl], we can show that we cannot set € = 0 in general in
(1.10) and in (1.12). An analog of the Theorem 1.7 (Part (T)) for §-subharmonic
functions was established by O.V. Veselovskaya [Vs| (1984) by the Fourier series
method.

If we have some additional information on the functions g; and h; in the initial
representation (0.1), then these additional properties can be preserved sometimes
in the final representation (1.9) (see [Kh9, Theorems 1-3] (1998)):

Theorem 1.8 (B.N. Khabibullin). If it is known in addition to conditions
of Theorem 1.7 that for f € Mer with f(0) = 1 there exists the representation
(0.1), where gf and hy are bounded in some open set B C C", then in (T) (recp.,
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in (Tc)) functions g and h can be chosen so that besides (1.10) (recp., (1.12))
for any v > 1 the inequlity

log(\g(z)| + \h(z)|) < Cy log(2 + |z|) , 2Z€B,,
holds, where
B, ={z€ B: dist(z,0B) > (1L +|z|) "},

dist(z,0B) is the distance from z to the boundary OB of B, and C, is constant.
If n =1, then functions g and h in (1.9) can be chosen also so that g and h
are bounded on the set {z € B : dist(z,0B) > 1/~v}.

For the general case of the Nevanlinna L-characteristic we have at present the
following result [Kh11] (2000):

Theorem 1.9 (B.N. Khabibullin). Let f € Mer and C" is represented as
(0.4). Then, with the preceding notations (0.2)—(0.6), for any constant € > 0,
there exists a representation (1.9) such that

log(|g(2)| + |h(z)|) < AETﬂ'((l +e)7 +B.-1;f) +Celog(2+2])  (1.13)

for all z € C", where A,, Be,C. are constants and 1 = (1,...,1) € ]Ri, T =
max{T,0}.

It is easy to see, that the Theorem 1.9 implies the Theorem 1.7 (Part (T)),
because always log(2 + |z|) < O(T(r, f)), r = |z|, f # 0,00. Also, if

log(2+ |7]) KONT)), k=mn, |F|=/ri+---+712, (1.14)

then the Theorem 1.9 is the extension of Theorem 1.4. It solves the Taylor
problem (TP) with minimal estimate (1.14) from below for A(7).

A general scheme of the solution of the representation problem and some other
problems (balayage method) was presented in [Kh7]-[Kh8], [Kh12].

Unsolved problems

Problem 1. Isit true, that the summand C'log(2+|z|) in (1.13) in the Theorem
1.9 can be removed ?

In any case it is true for £ = 1, and in the Theorem 1.4 for k = n if A\(7) is
slowly increasing.

Problem 2. Extend the result of the Theorem 1.8 to C*, n > 1, for classic
Nevanlinna characteristic T(r; f) and for Nevanlinna L-characteristic.
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Problem 3. Denote by PSH, the cone of all plurisubharmonic function on Ly,
p = 1,...,k, where L, was defined in (0.4). Denote by M;‘ the cone of all
positive Borel measures (Radon measures) with compact support in Ly, .

We introduce in M.l the partial order < by (see [M, Ch. XI])

(v<p) <= (/vduﬁ/vdu for all UEPSHP).

If v < u, then the measure y € M;,", is called a balayage ( also sweeping out or
Jensen measure [Gal) of the measure v (with respect to the cone PSH, ).

Further, let g = (u1, ... , ur) be a fixed simply ordered collection of measures,
where every measure y, € M, is the balayage of the Dirac measure d, € M, at
the point 0 € Ly, i.e., [udd, = u(0).

Let us be a plurisubharmonic function from (0.2). A function

Ty, (75 f) Z/"'/Uf(ﬁﬁa--- ,kCe) dpa (C1) -+ - dp(G) , 7 € RE,
S1 Sk

will be called the Nevanlinna—Jensen (L, p)-characteristic of f € Mer. How can
the Theorem 1.9 be extended for the Nevanlinna—Jensen (L, p)-characteristic 7

2. The representation of meromorphic functions with
restrictions on the type and on the circled indicator

In this section we consider the problem of the representation of a meromorphic
function f in C" as a quotient (1.9) with best possible estimates of the circled
indicators and of the types of the entire functions g and f.

The representation (or factorization) type o) (f, p) of a meromorphic function
f on C" of order p is defined to be the infimum of the numbers ¢ for which there
are entire functions g and h of order p with the type less than o (see [LG]) such

that f = g/h.
Let
TPt 0<p<1)/2,
Py(p) = siamp (2.1)
P, if p>1/2.

For n = 1 the first sharp result in this direction was established apparently
in our paper [Kh3, Theorem 2| (1992):

Theorem 2.1 (B.N. Khabibullin). Let f be a meromorphic function in the
complex plane C. If the type of the Nevanlinna characteristic T'(r; f) is equal to
o with order p, i.e.,

limsupr °T(r; f) =0, (2.2)

r—-+00
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then the sharp estimate o < oi(f,p) < oPi(p) is valid.

For n > 1 we set

n—1
Pa(p) = Pi(p) T (1+57)- (23)
k=1

For n > 1 we have [Kh5, Theorem 3] (1993):

Theorem 2.2 (B.N. Khabibullin). If the type of the Nevanlinna charac-
teristic T(r; f) is equal to o with order p, i.e., (2.2) holds, then

n—1
o <on(fp) <oPilp) [T b(2) < e Pulo),
k=1

where
blz) = {ez, if ©2>1, (2.4)

and for p <1 the sharp estimate

o < o,(f,p) < aPu(p) (2.5)

1s valid.

Let u be a plurisubharmonic function on C" of finite type with order p. Define
the function

hep(z,u) = limsup |{] Pu(éz), £€C, z€C".

E—o0

Its upper semicontinuous regularization

hep(z,u) = liréljzlp hep(G,u)

is called [LG, Definition 1.29] the circled indicator of growth of u (with order
p). If we are dealing with circled indicator of growth h7,((,u), then we assume
a priori that u is of finite type with order p. It is known that the circled indi-
cator is complex-homogeneous of degree p, i.e., hy,(£z,u) = [£|Phy,(2,u), € € C,
is plurisubharmonic, and h7,(z,u) > 0 if u #Z —oco. We remind that the circular
Nevanlinna characteristic T§(z) of f € Mer in (0.3) is plurisubharmonic. There-
fore, circled indicator of growth for T'f is defined. In terms of the circled indicator
of growth hZ, (¢, TF) we have the following best possible result [Kh5, Theorem 5.1,
Example 5.1] (1993):
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Theorem 2.3 (B.N. Khabibullin). Suppose that f € Mer, f(0) = 1, and
k is a continuous circular function on S™ C C".

1. If  hi,(C,TF) < k(C), (¢ €S™, then there exist entire functions g and h
such that f = g/h, g(0) = h(0) =1, and

max{h;,(¢,9),hi, (¢ h)} < Pu(p)k(C), ¢ e S™.

The constant Py(p) cannot in general be diminished, not even for any one
of the functions g and h.

2. If f = g/h is a representation of f as the quotient of entire functions g and
h, then
max{h,(C,9), b, (G h) } > ey (C,TF), ¢ €S,

and this estimate is sharp.

The main difficulty consists in the obtaining the upper estimates in the Theo-
rems 2.1-2.3. The success here was achieved with the use of the balayage method
(see the preceding section).

Unsolved problems

Problem 1. Prove the upper estimate in (2.5) for all p. See the commentary
to the last Problem in the next section.

Problem 2. Extend the results of the Theorems 2.2-2.83 to the Nevanlinna
L-characteristic and to the the Nevanlinna—Jensen (L, p)-characteristic.

3. Paley problem

The subject of this section is close to the themes of the previous sections in
both estimates and methods of proofs.

For a function w in C* (recp., in R™) with the range of values [—o0, +00] or
R U {0}, we set

M(r;u) = max{u(2) : |z| =r}, u"(z)=max{u(z),0}.

In 1932 R. Paley supposed that for any entire function f of order p > 0 the
inequality

< Pi(p) (3.1)
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holds (see the definition of P;(p) in (2.1)).

In (3.1) the equality is achieved, in particular, for the Mittag-Leffler’s func-
tion (see, for example, [GO, p.111]). Earlier the inequality (3.1) was proved by
G. Valiron [V] (1930) and by A. Whalund [Wh] (1929) for p < 1/2.

The Paley conjecture was conclusively proved by N.V. Govorov [Gv] only in
1967. In 1968, V.P. Petrenko [Pe| extended this result to meromorphic functions
of finite lower order. Different proofs was obtained later by I.V. Ostrovskil [Os]
for meromorphic functions and by M.R. Essén [Es| for subharmonic functions in
the complex plane.

Theorem 3.1 (N.V. Govorov—V.P. Petrenko). If f is a meromorphic

function in the complex plane C of finite lower order A\, i.e.,

log T'(r; f)

A = lim inf < +o0, (3.2)
r—+oo  log|r|
then the inequality
M (r;1
liming 20310811 P (3.3)

r—+oo  T(r; f)
holds.

The relative growth of T(r; f) and M (r;log|f|) for entire and meromorphic
functions of infinite order in the complex plane has also been considered by many
authors.

For entire functions of infinite order in the complex plane in [Ch](1981),
[MSh|(1984) and finally in [DDL](1990-1991) was proved the following result.

Theorem 3.2. (C.T. Chuang, II. Marchenko—A.I. Shcherba,
C.J. Dai-D. Drasin—-B.Q. Li) Let f be an entire function of infinite order
in the complez plane. If ¥(x) is increasing and positive for © > zo > 0 and if

7 dx
then
. M (r;log | f]) _
T ) p(logTirs f)) (39
and even

M (rslog f1) = o703 1) - ¥ (105 T(r: )

as r — +oo through a set of logarithmic density one.
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In [MSh| and [DDL] it is also shown that the results are best possible in some
sense.
For meromorphic functions in [DDL] (1990-1991) the following was obtained.

Theorem 3.3 (C.J. Dai-D. Drasin—-B.Q. Li). Let f be a meromorphic
function of infinite order in the complex plane. If ¥(x) is the same as in the
Theorem 3.2 then

M (r;log f[) = oT(r; f) - (log T(r; )) - logp (log Tr; ))

as r — +oo through a set of logarithmic density one.

A different approach has been taken in [Bel|, |[BB| (1990-1994) where the
characteristic M (r;log|f|) has been compared with the derivative of T'(r; f).

Theorem 3.4 (W. Bergweiler—H. Block). Let f be a meromorphic func-
tion of infinite order in the compler plane. Then

M (r;log|f]) _
r—+oo T (r;f) —

where T" (r;-) 1is the left-side derivative of T of .
Let 1(z) be positive and continuously diffirentiable for © > zy > 0 such that

Y(z)/z is non-decreasing, Y(x) < \/¢(z), and (3.4) is satisfied. Then (3.5)
holds.

The articles of I.I. Marchenko [Mal]-[Ma2] contains much information in par-
ticular on the growth of entire and meromorphic functions of infinite order.

We don’t know any results for entire and meromorphic functions of infinite
order in C", n > 1, wich are analogs of the Theorems 3.2-3.4.

Let u be a subharmonic function in R™, m > 2, (resp., in C*) and let |S™ !|
be the area of the unit sphere S™~! in R™, ds is the area element on the unit
sphere S™1.

1 1/q
mg(r;u) = ( e | / ‘u(rw)‘qu(x)) , r>0,1<¢g<4o00.
Sm—1

Then Nevanlinna characteristic T'(r;u) and M (r;u) are respectively

T(r;u) =mi(r;u™), M(r;u®) = meo(r;u™) = lim mq(r;u+).
qg—+00

In particular if f is a entire function in C* then T(r; f) = T'(r;log|f]), m = 2n.
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An analogue of (3.3) for subharmonic functions of finite lower order A in R™,
m > 3, was obtained by B. Dahlberg [D, Theorem 1.2].

To be more specific suppose A € (0,+00) is given. The Gegenbauer functions
CY are given as the solutions of the differential equation

2

d d
u—mﬁzg—(m+4mE§+MA+wnu:m l<a<l,

with the normalization

. T(A+2
wg?ocﬂ$%zcﬂnzzr@%rﬁihy

m—=2
2

Put ay) = sup{t 10,7 (t) = O} and define the function uy in R™, m > 3, by

0 if I S a)rTr
'U)\(-T) = m=2
rC, % (z1/r) if 21 > ayr,
where z = (z1,... ,2y) and r = |z|.
The function u) is subharmonic in R™ and the lower order of u) is A. Set

e M (T uy)
c(A,m) =liminf 7020

Theorem 3.5 (B. Dahlberg). Let u be a subharmonic function in R™,
m > 3, of finite lower order A\ > 0. Then we have that

lim inf 2275 %)
r—+oo T(r;u)

< c¢(A,m),
and this estimate is best possible.

The generalization of the Theorems 3.1, 3.5 is also known.

Theorem 3.6 (M.L. Sodin [So] (1983)). Let u be a subharmonic function
of lower order X in the complex plane. Then

ot

lim inf T3 %7)

< S 1 < 3.6
00 T(’l",’U,) —m(I( )\)7 <q_—|—oo, ( )

where mg(Sy) is the Lebesque mean of order q, 1 < g < 400, of the function

T COS Ap if el < ul

Sx(p) = C v
=10 if oo <lgl<m,
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for A\ >1/2 and
TACOS A

Sx(p) = sin A

for X <1/2, moo(S)) = max{Sx(¢) : || < 7}. The inequality (3.6) is sharp.

7 |()0| S ﬂ-;

This result was extended to m > 3 in [KTV, Theorem 1] (1995).
Set

m=2
me2 o JA(Am)C,* (cosb) if 0<6<ay,
0 it ay<0<m,

where
m=2
a) =min{f € (0,7) : C, > (cosf) =0},

Sm 2‘ -1
A\, m) = <|Sm 7 /C (cos 0)sin™~ 29d0> .

Theorem 3.7 ( A.A. Kondratyuk—S.I. Tarasyuk—Ya.V. Vasyl’kiv ).
Let u be a subharmonic function of lower order A > 0 in R™, m > 3. Then for
every q, 1 < g < +o00, the inequality

.. .mg(r;ut)
— << .
lrlgﬁgf T(r;u) — My (3, m) (3.7)

m—2
is true, where My(\,m) = my, (QA 2 ) There exists a subharmonic function u of
lower order A > 0 in R™ for which in (3.7) the equality is achieved.

Besides, from W. Hayman result [HK] it follows that for subharmonic functions
of order A = 0 the inequlity

e+
lim inf Mg (r; u”) <1

TN 7 ]‘ < < 7
r—+too T(rju) — = Foo

holds.

In [Kh6] (1995) we extended (3.3) to meromorphic functions f in C*, n > 1.
Instead of M (r;log|f]) the corresponding formulation involves in this case the
family of characteristics M (r;log|f¢|), ¢ € S™, of the slice functions f¢(w) =
f(w¢), w € C. This is understanble, for in the case of a meromorphic function
the quantity M (r;log|f|) can be identically equal to oo starting from some value
of r, whereas the Nevanlinna characteristics of f can have very slow growth (one
example is the function f(z1,22) = (1+ 21)/(1 + 22) in C?).
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Theorem 3.8 (B.N. Khabibullin). Let f be a meromorphic function in C*
of finite lower order A, i.e., (3.2) holds. Then

lim inf —M (T; log |f€|)

PN T TGy ST Cesh (38)

where Py () was defined in (2.3), and this estimate is best possible.

The estimate (3.8) was new also for entire functions and was not implied in
general by the above result of B. Dahlberg for subharmonic functions in R™,
m > 3.

On the other hand, one can pose the problem of finding a complete and best
possible analogue of (3.3) for plurisubharmonic functions and entire functions
of several variables. Such result was obtained in our paper [Kh10, Theorem 1]
(1999):

Theorem 3.9 (B.N. Khabibullin). Let u be a plurisubharmonic function
in C* of finite lower order A\. Then

lim jnf 245 %)

r—+oo T(r;u)

for A <1 and this estimate is best possible. For A > 1,

< Pa(N) (3.9)

Jim inf 2275 %)
r—+oo T(r;u)

<P(p) [10(2) <o P, (3.10)
k=1

where b(z) was defined in (2.4).

More can be said about the definitive character of (3.9). For each p > 0 there
exist in C" entire functions of order p and normal type such that

M (r;log |f])
im —— 2+
r—+oo T(r;log|f|)

Comparing with the Dahlberg’s theorem 3.5, we can draw the following con-
clusions:

:Pn(p)'

(a) for A = 0 or A = 1 the result of the Theorem 3.9 is a consequence of
Dahlberg’s theorem;

(b) for 0 < A < 1 and n = 2 Theorem 3.9 does not follow from Dahlberg’s
theorem;

(c) for A > me —1 and n = 2 even the estimate (3.10) in Theorem 3.9 does not
follow from Dahlberg’s theorem;

(d) as A = o0, for n = 2 the estimate (3.10) is better by order O(1/)\) than
the one following from Dahlberg’s theorem.
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Unsolved problems

Problem 1. FEztend the results of the Theorems 3.2-3.4 for entire and mero-
morphic functions of several variables of infinite order.

Problem 2. FExtend the results of the Theorems 3.8-3.9 to the Newvanlinna
L-characteristic and to the the Nevanlinna—Jensen (L, u)-characteristic.

Problem 3. Eustend the results of the Theorem 3.9 for the my(r;-) instead of
M(r;-).

Problem 4. Prove the upper estimate in (3.9) for all A.

Commentary. In order to prove the upper estimates in (2.5) for all p and
n (3.9) for all A, it is sufficient to confirm the following:

Hypothesis. Let S be a nonnegative increasing function on Ry, S(0) = 0,
and the function S(t) is conver with respect to logt, i.e., S(e®) is conver on
[—00,+00). Further, let \>1/2, neN, n > 2. If

1
/Sm )1 —2®)"2zdr <t*, 0<t<+o0, (3.11)
0
then
+o0
221 m(n—1) o A
e dt < . :
/S(t)(l—i—t”‘)? dt < 2\ kH<1+ 2k) (3.12)
O =

This Hypotesis is true if A < 1. When

n—1
S(t):2(n—1)H(1+;;€) t, /\2%,
k=1

we have the equalities in (3.11) and in (3.12).
It is not known even, whether the formulated Hypothesis is true for n = 2
and A>17
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