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We present an informal discussion of recent results on the asymptotic
behaviour of orthogonal polynomials, in particular orthogonal polynomials
with varying weight, emphasizing links with spectral theory. We apply some
of these results to find the leading term of the covariance of linear statistics
of certain unitary invariant ensembles of random matrix of large order.

1. Introduction

Orthogonal polynomials were always among the subjects of intense interest
of N. Akhiezer. He obtained a number of important results in this branch of
classical analysis and gave interesting applications. This concerns in particular
asymptotics of orthogonal polynomials whose weight is supported on several dis-
joint intervals of real axis. Respective results by N. Akhiezer and his colleagues
being of considerable interests by themselves, motivated also one of his most
known and influential result: invention of finite-band potentials, their links with
elliptic functions and with Abel inversion problem.

2. Asymptotics of orthogonal polynomials
2.1. Generalities

We will restrict ourselves to the polynomials orthogonal with respect to an ab-
solutely continuous measure. Let o be a finite union of disjoint intervals of the real

Mathematics Subject Classification 2000: 42C05, 47B35, 60B15.

© L. Pastur, 2002



Asymptotics of orthogonal polynomials and eigenvalue distribution...

axis and w be a non-negative measurable function whose support is . Assuming
that all the moment of w are finite, i.e., that

/|/\|’“w(/\)d)\ <00, k=0,1,..., (2.1)
a

we can construct the orthogonal polynomials {p;(A)}{2,, uniquely determined by
the conditions that p; is a polynomial of degree [ positive at infinity, and that

[ OV (YN = b 2.2
Any system of orthogonal polynomials satisfies the three-term recurrent relation
Ap(A) =1 (A) + sipr(A) + mpier(A), -1 =0, 7, >0, 1>0. (2.3)

The relation determines the semi-infinite Jacobi matrix
J ={JTri}ri=0s Tkt = Tk—10k—1,1 + Sk0ks + Trk11, (2.4)

that can be viewed as a self-adjoint operator in [2(Z,) under certain conditions
on the coeffcients r; and s;. In this case the functions

BN = (W) 2p(N), 1=0,1,... (2.5)

comprise the system of orthonormalized in L?(c) generalized eigenfunctions of
J, i.e. polynomially bounded solutions of the finite-difference equation (J); =
Apy, 1 =0,.... In particular, the resolution of identity E”(d\) = {E,‘c]l(d)\)}flzo
of J is

E{ (d)) = gr(Nyr(N)d. (26)

2.2. Asymptotics of “ordinary” orthogonal polynomials

The asymptotic behavior of orthogonal polynomials, defined by (2.2), depends
strongly on the number of components of their support. To avoid technical dis-
cussions we will assume that the weight is sufficiently regular.

The simplest case corresponds to the support consisting of the interval [—1,1].
In this case we have the classical result by Bernstein-Szegt (see e.g. [25]), ac-
cording to which if A € (—1,1), then

2

Pn(N) = wsin gV

cos (nd(A) + (X)) + o(1), n — oo, (2.7)
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where cos ¢(A) = A, ¢ € (0,7), and () is a certain function. This asymptotic
formula (and even the simpler polynomial one, corresponding to A ¢ [—1,1])
implies the asymptotic form of the coefficients:

rn =1/2+0(1), s, =0(1), n = oo. (2.8)

Define in [2(Z) the self-adjoint operator J, as the Jacobi matrix with coeffi-
cients {7y, k, Snk tkez of the form

T —n<k<oo s —n<k<oo
Tk :{ n+k» > ) Sk :{ n+ks > ) (29)

0, k < —n, 0, k < —n.

Then the relation (2.8) implies that the sequence {J,} of selfadjoint operators

converges strongly in [?(Z) to the Jacobi matrix Jélim), defined by the constant

coefficients that are equal to the leading terms of asymptotic formulas (2.8):
(lim) 1 1
(JO )kl = §5k71,l + §5k+1,la k,l €Z. (2.10)
Rewrite the asymptotic formula (2.7) as follows

Pn(N) = (2do(N)) "/ cos (rnue(N) +v(N) + o(1), (2.11)

where

1

A _

o) = 2 = [aode, do) = 1= 2) V), (212)
A

and x[_1,1] is the indicator of the interval [—1,1]. By using (2.6), we obtain that

for any interval A of the spectral axis the spectral measure E’»(A) of the Jacobi

. (lim) .
matrix J, converges strongly to the spectral measure E% (A) of the matrix

"
J(g im) , where
(lim)

lim JO
Echlé (@) = () cos ((k—Dr(N)dA,  e(N) = Eoodi/\(d”

= dO(A)X[fl,l](A)a
and 9(A), and do(A) are defined in (2.12). It is convenient to view (M) as
defined on the whole axis, continuing vy by zero for A > 1, and by 1 for A < —1.
Then we can say, by using the terminology of spectral theory of operators with
ergodic (in particularly constant) coefficients, that vy is the Integrated Density

of States of the Jacobi matrix Jélim) (see [21] for a definition of this quantity).
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In the case, where the support of the weight is a union of ¢ > 2 finite disjoint
intervals

o = Jla, b, (2.13)
=1

the asymptotic formulas are more complicated. To write these formulas, obtained
in papers [4, 23, 28], we recall the notion of the equilibrium (harmonic) measure.
Given a compact set o (2.13), consider the functional

E,(m) = — / / log A — plm(dA\)m(dp) (2.14)

defined for any non-negative unit measure m supported on o. A unique mini-
mizer v of this functional is called the equilibrium (or harmonic) measure of the
compact o. This classical concept of the theory of logarithmic potential has the
following electrostatic interpretation. Suppose that o is a conductor and positive
linear charges of total charge 1 are placed on ¢. Then the measure v describes
the equilibrium distribution of charges on ¢. In particular, if o = [—1, 1], then v
coincides with the measure vy of (2.12). Denote

V()‘) = V([)" OO))7 ap = I/([al,OO)), l= L...,q— L (215)

According to [4, 23, 28], there exist functions D : ¢ x T%"! — R;, and G :
o x T9"! - R such that

Pn(X) = (2dn(X))Y? cos (mnv(X) + (X)) + o(1), n — oo, (2.16)
where 1, () is defined in (2.5), and
dn(A) = DA\, na), () =G(A,na), na = (nai,...nag—1). (2.17)

Besides, there exist functions R : T ! - R, , and §:T9 ! — R, such that the
coefficients of the Jacobi matrix J of (2.4) have the following asymptotic form:

T = R(na) + o(1), s, = S(na) +o(1), n — oo, (2.18)

where the functions R and S are the "finite-band” coefficients, well known in
spectral theory and in integrable systems (see e.g. [26]). Functions D, G, R, and
S can be expressed via the Riemann theta-function, associated in the standard
way with two-sheeted Riemann surface obtained by gluing together two copies of
the complex plane slit along the gaps (b1,a2),... , (bg—1,aq), (bg, a1) of the support
of the measure v, the last gap goes through the infinity.
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The components of the vector a = {ozl}?:_l1 are rationally independent generi-
cally, thus the functions D(A, na), G(A, na), R(na), and S(na) are quasi-periodic
in n. As an early precursor of this fact we mention a result by N. Akhiezer [1],
according to which if o consists of two intervals, then a certain characteristic
of respective extremal polynomials of degree n can be expressed via the Jacobi
elliptic functions as n — oo. As a result the characteristic does not converge as
n — oo but has a set of limit points that fill a specific interval generically in the
intervals lengths.

Asymptotic relations (2.18) allow us to define the limiting Jacobi matrix in
the multi-interval case. Namely, we again define the matrix J,, by formulas (2.9).
Then, by choosing the subsequence {n;};>¢ such that

jlgglo{njal} =z, l=1,...,qg—1, (2.19)

where z is a point of T97!, and {¢} denotes the fractional part of ¢+ € R, we obtain
from (2.18) that the sequence {J,,} converges strongly to the Jacobi matrix

JUm) (), defined in {2(Z) by the coefficients {R(ka + z), S(ka + ) }rez.

The frequencies a1, ... ,aq—1, defined in (2.15), are rationally independent
generically with respect to the weight, hence the Jacobi matrix JUm) (z) is quasi-
periodic generically, and a1,... ,04—1 are the basis frequencies. The spectrum

of JUim)(z) is (2.13), and its spectral measure E/"™ can be obtained from (2.6)
and from (2.16) as the strong limit of the spectral measures of matrices J,. In

J(lim)

particular, the diagonal entries of E are

ELS™ (dA) = D\ ka + 2)d), k € Z. (2.20)

This gives the spectral meaning of the normalizing factor in asymptotic for-
mula (2.16). The function v(A) of (2.15) has also a spectral meaning. Namely, it
can be shown that it is the Integrated Density of States of the quasi-periodic (thus
ergodic) Jacobi matrix J (im) " Tn) particular, for any interval A of the spectral axis
the measure v is

v(A) = lim 1 > Ey(A). (2.21)
l

The density d of this measure, known as the Density of States of the quasi-periodic
matrix JI™) [21], is

d(\) = D\, x)dx, (2.22)
A
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and is a particular case of general formulas of the spectral theory of ergodic
operators (see e.g. formula (4.12) of [21]).

2.3. Asymptotics of orthogonal polynomials with varying weight

In this subsection we discuss a special class of orthogonal polynomials, known
as polynomials with varying weight. They are defined by the weight w,,, supported
in general on the whole real line and depending on a big parameter n € N:

wy(N) = eV, (2.23)

where V' is a sufficiently regular and growing on infinity function (the latter

condition is necessary to guarantee condition (2.1)). Polynomials {pl(")(/\)}fio,
orthogonal with respect to weight (2.23), appear in approximation theory [27],
and in studies of eigenvalue distribution of random matrices (see [18, 20] and
below). The corresponding Jacobi matrix J(™ has the form

T® = {180, T = i 8kmrg + O + 1 S (2.24)

Typically V is a polynomial of an even degree, positive at infinity. The simp-
lest case of polynomial potentials is

V =2)2 (2.25)

In this case the respective polynomials can be expressed via the Hermite polyno-
mials:

p™M(A) = (2n) VAT 2 Hi(MW2n) = (20) Y 0 (AV2n), (2.26)

where Hj is the Hermite polynomial of the order I, the polynomials {h;};>o are

orthonormal on the whole axis with respect to the weight e_$2, and coefficients

of the matrix J™ are

r™ = /I/an, s™ =0, 1>0. (2.27)

Recall the Plancherel-Rotah asymptotic formula [25] for h;, according to
which for x = /2] + 1cos ¢, 0 < ¢ < 7, we have for [ — oo:

, 1/4
Pi(z):=e /2pl($) = (%) W [cos ((l +1/2)A(¢) — 7r/4) + o(l/l)],
(2.28)

where

A($) = ¢ — sin24/2. (2.29)
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Outside the interval |z| < /20 + 1 the function 1); decays exponentially fast as
l — oc.

This asymptotic formula allows us to find asymptotic formulas for the func-
tions

M) = eV OpM () (2.30)

with V given by (2.25). However, since now the orthogonal polynomials and
coefficients of the associated Jacobi matrix (2.24) depend on two indices | and n,
we have to choose a proper asymptotic regime. We will assume that [ = n + k,
where n — oo and k is an arbitrary fixed integer (cf (2.9)). In this regime we find
for A\ =cos¢, 0 < p<m:

P (0) = (2dg(N) /2 cos (nA(¢) + ke + To(9)) +o(1), To(¢) = ¢/2 — /4,
(2.31)

where dg()) is defined in (2.12). Denoting No(\) = 7 L A(¢) = 7 (¢ —sin2¢/2),
we find that (cf (2.12))

1
M) = [ o, po(h) = 2 VT Noxp-1,(A), (2.32)
A

This allows us to rewrite (2.31) in the form (cf (2.11))

P () = (2do(N)Y? cos (TnNo(X) + kvg(A) + To(A)) + (1), n — oo,
(2.33)

where () is defined in (2.12).

A new phenomenon here is that the interval of oscillatory asymptotic behavior
is not the whole support of the weight, as it was in the previous subsection, but
a part of the support, the interval (—1,1).

In the regime,

l=n+k, n— oo, kis fixed, (2.34)

that we are considering now, the coefficients rl(") of (2.27) are constant:

limr(™ = 1/2. (2.35)

Here the symbol lim... denotes the limit (2.34).
Recalling that in the case of the Hermite polynomials the diagonal coetficients
vanish, we see that the coefficients (2.35) define the same limiting matrix Jéhm) as
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in (2.10). This fact can be viewed as a justification of the regime (2.34), because
the spectrum [—1,1] of J (im) nincides with the oscillatory interval of asymptotic
formula (2.33), as it was in the Bernstein-Szego case. Besides, the leading term

of this formula is a generalized eigenfunction of the matrix Jélim) (a polynomially
bounded solution of respective finite-difference equation (Jéhm)w) £ = A,
k € Z), as it was for the Bernstein-Szegd asymptotic formulas (2.7), and (2.11)
of the previous subsection.

To describe the asymptotic formula for any polynomial function V' in (2.23),

we need another variational problem:

eviml = [ [1ogx— plm(@m(du) + [Via(mi@y),  (230)
R R R

where and m is non-negative unit measure.

The variational problem, defined by (2.36), goes back to Gauss and is called
the minimum energy problem in the external field Vgz;. The unit measure N
minimizing (2.36) is called the equilibrium measure in the external field Ve
because of its evident electrostatic interpretation as the equilibrium distribution
of linear charges on the ideal conductor occupying the axis R and confined by the
external electric field of potential V,;;. We stress that the respective variational
procedure determines the both, the (compact) support o of the measure and the
form of the measure. This should be compared with the variational problem
(2.14) of the theory of logarithmic potential, where the external field is absent
but the support o is given. It is easy to see, that in the case (2.25) the measure
N is given by (2.32 ). The minimum energy problem in the external field (2.36)
arises in various domains of analysis and its applications (see recent book [24] for
a rather complete account of results and references concerning the problem).

Assume that Vg, is such that the support o of the measure N has the form
(2.13) of the union of ¢ disjoint intervals. Introduce the non-increasing function
(cf (2.15))

N(A) = N([A, 00)), (2.37)
and the (¢ — 1)-dimensional vector
B={B}1: fi=Nan) (2.38)

According to [12], there exist functions dj, x(A), and Iy, x(A), K = 0,1, and a num-
ber 0 < 7 < 1 such that if A belongs to the interior of the support o (2.13),
then

() (A) = (2w (V)7 cos (rnN(A) + Trx(N) + O (n77), n = 00,  (2.39)
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where zpl(") is defined in (2.30). Moreover, d,, (A) and I', .(A) depend on n via
the vector nf3, i.e., there exist continuous functions Dy : ¢ x T9~! — Ry, and
G : 0 x TT 1 — R such that (cf (2.17))

dnk(A) = De(A,nf), Tpk(A) = Ge(A,np), K =0,1. (2.40)

If X belongs to the exterior of o, then each w;bn,)n decays exponentially in n as
n — 00o.

Similar asymptotic formulas are valid for coefficients of the Jacobi matrix J(™
of (2.24). For the sake of simplicity we restrict ourselves to the case of an even
function V in (3.1), where the coefficients sl(") in (2.24) vanish. Then, according
to [12], there exist a continuous function R : T?! — R, such that we have

r™ = RmB)+0(n""), n— oo (2.41)

The functions Dy, Gx, and R has the same structure as the functions D, g,
and R of formulas (2.17) and (2.18) of the previous subsection. Hence the main
difference in asymptotic formulas of the previous subsection and of this subsection
is that in the former the "rotation number” and the frequencies are determined
by the measure v, minimizing the functional (2.14), while in the latter these
quantities are determined by the measure N, minimizing the functional (2.36).

To describe a connection between these measures, it is useful to consider the
following one-parameter family of external fields:

1
Veat = EV’ (2.42)

where V' does not depend on g > 0. This form of the potential with the explicitly
written amplitude is widely used in physical applications of the random matrix
theory (see e.g.[14]). In the case of the potential of this form the minimizing
measure of (2.36) and related quantities will depend on g. In particular, it will
be the case for the support o4 of the minimizing measure Ny, i.e., we have

qg—1

o = | Jla(g), bu(9))- (2.43)

=1

Consider now the variational problem (2.14) on the support o, , and denote the
respective minimizing measure v4. Then, according to [11], the measures Ny, and
v, are related as follows:

9
Ny=g" / ved§ . (2.44)
0
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Some particular cases of this formula and its spectral meaning were given in
[19, 10].

In addition, according to [16], for every g > 0, except at most a countable set
of values without a finite accumulating point, the number of intervals of o, does
not depend on g, the endpoints of the intervals are analytic in g, and, according
to [12], the function R depends continuously on g.

This allows us to give an analogue of the limiting Jacobi matrices, introduced

(n)

above. Indeed, consider the coefficients 7, of the Jacobi matrix (2.24), associated
with polynomials {pl(n)}lzo with varying weight. Introducing explicitly the de-
pendence of the coefficients ’I‘l(n), of the frequencies (2.38), and of the function R
of (2.41) on g, we can write in view of (2.23):

r™(g) =" (gl/n). (2.45)
Setting here [ = n; + k, where
]li)n;o{n]ﬁl} =z, 1=1,.,9 -1, (246)

z is a points of T, and k is an arbitrary fixed integer (cf (2.19)), we obtain in
view of (2.41):

. (ny) . s (nitk nj +

lim rn?{i_k_l(g) = IimR < ]nj 9,(n; +k)B ( ]nj g

= R(9,(98(9))k + ).

Now, by using formula (2.44), we find the relation

(98(9))" = a(yg),

where «(g) is defined by (2.15) with v, instead of v. We conclude that the limit
in the r.h.s. of the above formula is

jli)rgorgﬂzk_l(g) =RI(g,kalg) + ), k€ Z.

We obtain the quasi-periodic Jacobi matrix Jm) (z), defined by the
coefficients of the r.h.s. of the last formula and having the same frequencies
(a1, .. ,aq—1) as the coefficients of the matrix J!™)(z) of the previous section
(recall, that we are considering the case in which diagonal entries of J™ vanish).

By applying the same limiting argument to the asymptotic formula (2.39) for
k = 0, and by using (2.44), we obtain that in the regime (2.34) (cf (2.33))

YI(O) = (2Do(Ag,ka + )"/ (2.47)
cos (WnN()\,g) + mkv(A, g9) + Go(\, g, ka + :(;)) +0(1), n — oo.

X
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Setting here kK = —1 and comparing with formula (2.39) for Kk = 1, we obtain that
the functions Dy, and G; of this formula are

,Dl(Aaga'T) = DO(A,ga - +"I")’ gl(A,g,.’IJ) = gO()"ga —o+ ‘T) (248)

By using these formulas, we can compute the limits of the entries of the
spectral measure E7" of J®) of (2.24) in the regime (2.46):

(n5)
lim B 7, k(dA) = Do(X, g, ka +x), k € Z.

The limit here is the weak limit of measures. The support in A of the r.h.s. of this
formula is the support o4 of the equilibrium measure Ny. This and the strong
convergence of J™ to J(im) (z) in the regime (2.46) imply that the spectrum
of the quasi-periodic matrix J™ (z) is 04. Besides, arguing as in the proof of
(2.22), we obtain that the function

i) = / Do(\ g, 2)dz (2.49)
Te-1

is the Density of States of the quasi-periodic matrix J(lim).

It is tempting to conjecture that the matrix JU™)(z) of the preceding subsec-
tion and the matrix JU™) () of this subsection are strongly related if not coincide,
modulo a certain shift in their arguments.

The measures vy, and N, as well as their supports are not simple to find
in general. Here is a class of polynomial functions V' of (2.23), for which these
measures can be found in elementary functions [10].

Let v be a polynomial of the degree ¢ such that all the zeros of the polynomial
v? — 4g are real and simple. Assume that there exist a constant C such that the
potential Vg, can be written in the form

’112

V:zmt()\) == % + C (250)

Then the support o4 of measures v, and Ny is

oy ={) € R:v?*()\) —4g < 0},
the measures v, and N, are absolutely continuous and their densities d(-, g), and
p(-,g) are

ang) = w2 n) — a9 2, 0, ptn9) = B o) — g2, (),

(2.51)
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It can also be shown that respective limiting Jacobi matrices are periodic of pe-
riod g, and that

a=0=I1/(g—1),l=1,...,¢—1. (2.52)

The fact that the spectrum of a periodic Jacobi matrix is the image of a poly-
nomial map is well known in spectral theory (see e.g. [17]). Here this fact appears
in a somewhat different setting.

In conclusion we will give one more application of the differentiation with re-
spect to the inverse amplitude in (2.42) as a tool of obtaining asymptotic formulas
for orthogonal polynomials with varying weight.

Consider the case, where the potential is a real analytic and even function,
and assume that the support of the respective measure N is an interval [—a,a).
In this case we have (see e.g. [19]):

a

p(A) = %P(/\)\/HX[_Q,G](A), P()) = l/ VIO = V'(w) _ dp

T A—pu a2 — 22’
—a
(2.53)
where ¢ is defined by the equation
[ AV!(A)dA
—— = 27mg. 2.54
Ve (2:54)
—a
According to [5, 12], in this case we have
T CO R
nli)ngorn_l =35 (2.55)
and according to [6]
Y =a/2+ ck/n+o(nY), [k = O(n~%?), (2.56)
where
¢! =aP(a). (2.57)

The proof of relations (2.56)—(2.57) requires rather involved arguments. Here
is a short heuristic derivation of the formulas. It is widely believed that the
remainder term in (2.55) is O(n %) (see e.g. [13], where this fact is proved for
V(A) = const - |A|*, a > 2). Hence, we can write

TT(LR_)l(g) =a(g)/2 +0(n™?), n = oo,
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and we have for I =n+k, |k| = o(n), n — oo:

r"(g) = (A +k/n)g) =a((L+E/n)g) /2 + O(n~2)
_ a;g)+ (z)gi“(”‘l)-

Comparing this formula with (2.56)—(2.57), we see that the coefficient ¢ should
be equal a’/2. The derivative a' can be computed from the equation (2.54):

2 1 [ V'(Ndr

a \/a — 2

Now it can be shown the last expression coincides with (2.57), provided that a
satisfies (2.54)—(2.53).

3. Eigenvalue distribution of random matrices

In recent years the eigenvalue distribution of various ensembles of random
matrices has been extensively studied, being motivated by a number of questions
in physics and mathematics (see e.g. review [20] and references therein). In
particular, of considerable interest are unitary invariant ensembles of Hermitian
matrices, known also as matrix models. Their probability distribution is defined
by the density

pn(M) = Zn_1 exp(—nTrV(M)/g) (3.1)

with respect to the ”uniform” measure

dM = H dMj; [ [ dRMjrdS My (3.2)

i<k

in the space of Hermitian matrices M = {Mjx}7, M;y = My;. In (3.1), Z; 1 is
the normalization constant and V is a real-valued function, bounded below and
growing faster than 2log |A| as |A| = oco. Typically V is a polynomial of degree 2p
positive at infinity, although much broader classes of potentials are also studied.
Among numerous problems of the theory and of its applications we mention three
asymptotic problems on the large n behavior the eigenvalue counting measure of
random matrices. The measure is defined as follows.

Denote /\gn) < ... < )\%n) eigenvalues of a random matrix, and define the
measure
No(A) = {2\ e At (3.3)
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where A is an interval of the real axis. N, is called the normalized counting
measure of eigenvalues. We are interested in the asymptotic behavior of the
following three characteristics of this random measure:

(p1) Expectation

Nn(A) = E{Nn(A)}, (3-4)

where the symbol E{...} denotes the expectation with respect to the distri-
bution (3.1)-(3.2).

(p2) Covariance
Cov{Nn(A)1, Nn(A2)} = E{Ny(A1)Nn(A2)} — E{Ny (A1) JE{N,(A2)}.
(p3) Probability distribution P {N,(A) = k/n}, in particular the hole probabil-
ity
E,(A) =P{N,(A) = 0}.
It is well known in random matrix theory (see e.g. [18]) that the above quan-

tities can be expressed via orthogonal polynomials with varying weight e ™V
Namely, introduce the reproducing kernel

n—1
Knhm) = 3 9" (V9™ () (3.5)
1=0
of the orthonormalized system (2.30). Then we have [18, 22]:
No(8) = [ on A, g = a2 ), (3.6)
A

Cov{N,(A)1, Nnp(A2)} = 2—7122 //[Xm(&) — X2: (M) PK 2 (A1, A2)dAid)s,
(3.7)

and
E,(A) =det(1 — K,(A)), (3.8)

where K,,(A) is the integral operator defined by

(Kn(B)F)(N) = / Ko 1) f (w)dpsy A€ A,
A
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and det(1 — K,(A)) is its Fredholm determinant.
By using the Christoffel-Darboux formula

) DB, () = B (VB (1)
1

Kn(Aa /’L) =Tn A— 1 ’ (39)

we find that the problems (p;) — (p3) can be studied provided that asymptotic for-

mulas for the polynomials pg@l and pgl") are known. Since however, the respective
asymptotic formulas were not available till the recent paper [12], the progress of
the theory was based on other means. In particular, the problem (p;) was solved
in [8, 15] by using the variational method. More precisely, it was proved that for
any interval A of the spectral axis the normalized counting measure (3.3) of the
ensemble (3.1)—(3.2) converges in probability to the non-random limit, known as
the Integrated Density of States (IDS) of the ensemble, and coinciding with the
minimizing measure N, of the functional (2.36)—(2.42). This implies, in particu-
lar, that the measure N, of (3.4) converges weakly to the measure Ny.

Furthermore, it was found in [22] that under certain conditions on V in (3.1)—
(3.2) (valid for all polynomial potentials) the inequality p(Ag,g) > 0, where p is
the density of the measure NV, implies that

. S

where S; is the integral operator, defined by

S

5.6 = [ 2 rnyan, 0< € <. (3.11)
0

We see that the limit (3.10) does not depend on V in (3.1), coinciding, for
example, with that for the simplest Gaussian case (2.25 ). This property is called
in the random matrix theory the universality of the local eigenvalue statistics
[18, 20]. The property was also proved and considerably detailized in paper [12],
as an application of asymptotic formulas (2.39) for the polynomials with varying
real analytic weight, obtained in the paper.

It is instructive, however, to obtain formulas for the IDS, and for the kernel of
the operator Ss of the universality statement (3.10)—( 3.11), by using the above
asymptotic formulas for orthogonal polynomials with the varying weight, and the
trick of the varying of the amplitude g.

We will use formula (3.6) for the density p, of the mean measure N, of

(3.4). The formula includes the orthonormalized functions wl(n) of (2.30) for | =
0,...,n — 1. Indicating explicitly the dependence of these functions on g and
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using the relation (cf (2.45)):

(A g) = ¢V (A, gl/n), (3.12)

we obtain from (3.6) and from (2.39) that the leading contribution to py,
as n—oois

% 2_: Dy (A, gl/n,la(gl/n)),
=0

where the function Dy is defined in (2.39)—(2.40). Now we will use the fact that
the functions Dy(A, g, ), and a(g) depend continuously g. Hence the summand in
the last formula is "slow” varying in [ /n and is "fast” varying in [. This observation
results in the limiting formula for the density p(), g) of the Integrated Density of
States N, of the ensemble (3.1)—(3.2) (the minimizing measure of the functional
(2.36)—(2.42 )):

1
p(A, 9) :/dt / Do(A, tg, z)dz. (3.13)
0

Te-1

Comparing this formula with formula (2.49) and with (2.44), we conclude that
the Density of States (2.22) of the matrix J™) and the Density of States (2.49) of
the matrix JU™) coincide. This fact can be viewed as a support of our conjecture,
according to which the quasi-periodic matrices JU™)(z) and JU™)(z) coincide up
to a shift in their arguments.

Counsider now formulas (3.10)—(3.11). It can be shown that the proof of these
formulas reduces to the proof of the validity of the limiting relation

. —1 _ sin7(§1 — &o)
lim (npn (X)) Kn(Xo + &1/mn (M), Ao + E2/npn (X)) = Tl -5
uniformly on compacts in (£1,&2), and for any A\ such that p(Ag, g) # 0 (see [22]).
According to ( 3.12), (3.5), and (2.39), the expression under the ”lim ” sign in the
last formula is for A1 2 = Ao + &1.2/pn(A0), and for n — oo:

(3.14)

(pa(r0,9) Zwl (O, gl/m)g” Az, gl/n) = (npn(R0,9)) ™"

B p(og1/n)
xﬁEDo(A,gl/n,la(gl/n))Cos (ﬁ(ﬁl—ﬁz) p(o/\o’ 2 I/n ) o(1),
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where we have used the asymptotic relation

Do (A1, gl/n,la(lg)/n) — Do (X2, gl/n,la(gl/n)) = o(1),

the analogous relation for G (1,2, 9l/n,la(gl/n)), and the relation

N()‘l,gl/n) - N(>‘2,gl/n) = (51 - 62)p()‘059l/n)/p()‘0,g) + 0(1)

Taking again into account that the dependence on [/n is “slow”, and that the
dependence on [ is "fast” in the above formulas, we obtain that the leading term
of the r.h.s. of the last formula is

1

_1(/\0,9)/003 (W(ﬁ —&2) 82:915 )dt/Do (A tg, z)dz.
0

This formula and the relations (3.13) and d(\, tg)dt = d; (tp(), tg)) imply (3.14).

As for the problem (p2), it was studied in several physical papers. In particu-
lar, it was found in [7, 9] that in the case where the support ¢ of the measure N
consists of a single interval [—a,a] and the indicators xa,, in (3.7) are replaced
by continuously differentiable functions ¢; 9 of compact support, i.e., Ny (A1 2)
are replaced by the linear statistics

nlp1,2] Z p1,2(N ), (3.15)
we have
hm n"2Cov{N,[p1], N [ch]} (3.16)
/d)\/ (101 Ef))(:j)QZ(A) _‘P2(,U/)) ((1,2 _)\u)d()\)d(u)_

The formula was justified in [15]. We see that in the case, where the support of
the measure N consists of the single interval, the limiting form of the covariance
of linear statistic (3.15) depends on V only via the endpoints of the support,
determined by the variational problem for the functional (2.36).

By using formulas (3.9) and (2.39) for a general case, where the support of
the Integrated Density of States N consists of ¢ intervals, we obtain that

n2Cov{Ny[p1], Np[p2]} = Cn + 0(1), n — oo, (3.17)
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where

_ B2 (p1(A) — o1(p) (p2(A) — wa(p))
C. = R\ n)/d)\a/du e (3.18)

X (Do(hwn)D1(0wn)) = D (A wa) DY (0, wn) Dy (11, 0 ) D 11, 00)

X  COoS (go()\, Wp) — gl(/\,wn)) coS (go(y, wp) — gl(u,wn))),

g

and w, =np € TI 1.

We mention two differences of this formula from formula (3.16), corresponding
to a single interval case (it can be checked that (3.18) reduces to (3.16) if ¢ = 1).

The first is that the amplitude C,, of the leading term of the covariance de-
pends non-trivially on n if the support of the IDS of respective matrix ensemble
consists of ¢ > 2 intervals. The dependence is quasi-periodic generically, when
the numbers G, [ = 1,... ,q — 1 are rationally independent. In the non-generic
case of periodic Jacobi matrix JUim) the dependence of the amplitude C,, is also
periodic. In particular, in the case (2.52), the period is ¢ — 1 . This does not
agree with results of physical papers [2], according to which the amplitude does
not depend on n.

The second difference is that the amplitude C, of leading term of the co-
variance depends on the potential not only via the edges of the support
of the IDS of respective random matrix ensemble, but also via the frequencies
G, L =1,...,9— 1. The dependence also disappears in the periodic case (2.52),
thus in this case the form of C,, is completely determined by the endpoints of
the support. The simplest case is where the potential is even, o = [—b, a] U [a, b],
where 0 < a < b < 00, and where the matrix JU™) is of period 2 (in particular,
this is the case for potential (2.50) with ¢ = 2). In this case it can be shown, by
using formula (2.39), that

1 ) — ) —
c, — ﬁ/d/\/du("ol( ) 901((//\1)1(5)22( ) — pa(n))

x (O — @) O — %) = (=1)"ab(A — %) /X ()X (),

g

where X (A\) = /(02 — X\2)(\2 —a?), A€ 0.
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