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The direct/inverse problem is solved for the step-like Jacobi operator in
the prescribed class of convergence of the operator coefficients to their limits.
The characterization of scattering data is given by means of Marchenko
approach ([7]).

1. Introduction

Under the step-like Jacobi operator (Jacobi matrix) we mean the operator in
()

(Ly)n = @n—1Yn—1 + bn¥Yn + nyn+1, (1-1)

where inf,c7 a, > 0 and
1
an — 5 = 0, b, —sign(n)b—0 (n = +00).

Here b € R\ {0} is some constant. The discrete operator in I2(Z), generated by
the finite-difference operation

1 1 .
(Loy)n = 5Yn—1 + 5 Un+1 + sign(n)byy,

is called the Jacobi operator with pure step. This operator arises as an initial
data for the Toda lattice in the Toda shock and rarefaction problems as |b| > 1
([12, 9]). The direct/inverse scattering problem for operator L was studied in
[12] under the following two assumptions: (1) the coefficients a, and b, tend to
their asymptotes faster then any polynomial; (2) the step is "big" ( |b] > 1). We
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The scattering problem for step-like Jacobi operator

study the scattering problem for the small step (|b| < 1) and when the rate of
approximation is following

1
5 Il {lan 51+ 16 — siga(u)t } < . (1.2
nezZ

Such operator is considered as an initial data for the Toda lattice in [3], where the
asymptotic behavior of solution is studied under an assumption that this solution
exists. At the present study we solve the scattering problem for associated L-
operator .

Since there is no difference between the cases b > 0 and b < 0 we restrict
ourselves with the case —1 < b < 0. Then the continuous spectrum o.(L) =
[-1 4 b,1 — b] of the step-like operator consists of two parts : of multiplicity one
[-1+b,—1—b]U[1+b,1—0] and of multiplicity two [-1—b,1+ b]. The discrete
spectrum of this operator is finite (see Section 2) .

Let A € C be the spectral parameter of problem:

Ly = \y. (1.3)

Introduce two more spectral parameters z; and z_, related with A by the Jukovski
transformation

1
AFb= §(Zi+z;1). (1.4)

The functions Zy : A — z+ map the upper (resp. lower) half-plain onto the lower
(resp. upper) unit half-disks. Denote

T = {21 : 22| =1},  DF = {23 : |22| < 1}. (1.5)

and put
Pt =D\ Z (1+b1—b]), P-=D"\Z ([-1+b,—1—b)). (1.6)
The maps Z4 : C\[~1+b, 1—b] — P* are single-valued. Introduce also notations

Aat:Z:t([il_l_ba il_b])a A?::Z:I:([_l_ba 1+b])a

AF =T\ AT (1.7)
Thus Ag and AQi represent the images under the Jukovski transformations Z of

spectrum of multiplicity one, the set Af)t corresponds to the real part of spectrum
on z4 -plain . Ali are the images of spectrum of multiplicity two.
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Let f¥(zi) ~ 22" as n — +oo be the Jost solutions of the problem (1.1)-
(1.3). In the domains P* they are single-valued functions of A. In the domains
|z+| < 1 they admit the representation through the transformation operators

([8, 11])
+oo
fE(zx) = > Ki(n,m)ze®™. (1.8)

Consider the scattering relations
TEfF =R*f* 4+ f£, 24 e T (1.9)
They imply the following properties A-E of the transmission 7% and reflection
R* coefficients (for proofs see Section 2).

A. The functions R*(z1) and T*(z+) are continuous functions on the sets
T+ \ {F1} . The relations are valid

Ri(z:zl) = Ri(zﬂ:)’ Ti(zil) = Ti(z:l:)a 2+ € Ti ) (110)
T*(24)

R¥(zy) = ., zi €AT, 1.11

( i) Ti(zi + 2 ( )

-1

TR ZE TS 1 |RER, oz € AR (1.12)
24+ — 2+
R+ R~
(24 — 247 1) = (z- — 2z 71, zy € AL, (1.13)

™ 7=

In equalities (1.12) and (1.13) the points z; and z_ correspond to one point
A, that is z4 = Zi(Z;I(z:F)).

Let {A1,A2,...,Ap} be the eigenvalues of operator L , let z4, = Z1(Ag) be
their images and (a;F) = (|| f*(2+,)||) ™" be the associated (+)-norming constants

for eigenfunctions. It is evident that
B. {\,..., R\ [-14b,1-0], of >0,k=1,...,p.

The connection between corresponding + and — norming constants is given
by equality

(O )2 = (o ), (1.14)
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where

W) ={",F7) = ana(fi_1fa — fa Faz1) (1.15)
is the Wronskian of the Jost solutions (1.8).

C. Functions T* can be continued as meromorphic functions in the domains
P* with the only simple poles at the points zy . For each A € C\ [-1+b, 1 —1b]
and z4 = Z1 () the equality holds

Zy —Z -1 Z_—Z_il ~
;T+(;+) = T =W(\). (1.16)

Function W()) is holomorphic in the domain C\ {—1+b, 1 —b} and continuous
till boundary. Besides,

lii{)lW(/\iz'e) #0as\A € (—1+b, 1—b). (1.17)
£

IfW(=1+b)=0 (resp. W(1—b)=0) then (‘L—VK #0 (resp.gz—vg #0).
Note, that in fact
W(A) =W(A), (1.18)
where W () is the Wronskian of the Jost solutions.
D. The transmission coefficients are bounded as z+ — 0 and
TH0)T~(0) = (K4 (n,n)K_(n,n))"2, (1.19)

where the product K, (n,n)K_(n,n) does not depend on n.

The Marchenko equation of problem (1.1)—(1.3) is derived in [2, 3|. It has a
standard form (see, for example, [11]):

d(n,m) =
——— =Ki(n,m)+ Ki(n,)FL(l +m), +m > +n, 1.20
K (n.m) +(n,m) ; +(n, 1) Fa ( ) (1.20)

where §(n,m) is the Kronecker symbol. The kernel Fy of this equation is repre-
sented as

+1 2
p
1 1 o
F:I:(m) = ;(alzct)?(zi,k):tm + ; /hi(z)z:tm—ldz + ﬂ/‘]%:i:(619)6:l:zmé?d0’
- 24 0

(1.21)
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where
12+ — 22"
hE(zq) = o T |T** (24 +i0) (1.22)
22 — 2y
and
Qi = Zi(:l:l + b) (1.23)

The points z4 in formula (1.22) correspond to one point A. The following condi-
tion E establish the connection between the smoothness of function Fy(m) and
the rate of approximation (1.2). Denote by

27
Ri(n) = —/ R*(e'?) e*n? 4g, (1.24)
0

the Fourier coefficients of the reflection coefficients. Then

E. The following estimates are valid under condition (1.2)

+oo
Y n (Re(n+2) — Ri(n))] < 0. (1.25)

n=I

In Section 2 we prove that the part of the Marchenko equation kernel
+1
r7 1 +n—1
Hi(n)=x— [ hi(z)z dz (1.26)
T
2+

and the part, corresponding to the discrete spectrum, also satisfy estimate (1.25).
The set

(R*(24), TT(24), R (2-), T~ (22), A1y s Ap, @ .oy 05)) (1.27)

forms the scattering data of problem (1.1)-(1.3). The full characterization of
scattering data is given by the properties A—E. Namely, the main result is the
following

Theorem 1.1. Let —1 < b < 0. The necessary and sufficient conditions
that a set (1.27) be the scattering data of unique operator (1.1), satisfying the
condition (1.2), are the conditions A-E.

The proof of sufficiency (the solution of inverse problem) is given in Section 3.
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2. The direct scattering problem

Here we give the proof of conditions A—E. First of all, we discuss the analytical
properties of Jost solutions.
Let G4(n,m, z1) be the Green function

z:tm—n_z:tn—m :l: :I:
Gi(n,m,zy) = £2 { T (2.1)
0, +m < +n,
and let
—+00 n—1
oh(z) =[] ay) £ (z1),  bn(em) = [] (2a5) fn (20).  (2:2)
j=n j=—o00

From the asymptotic behavior of the Jost solutions it follows that the functions
¢ satisfy the discrete integral equations

+oo
P (zx) = 225"+ Y Ja(n,m, 24)dp, (22), (2.3)
m=nzxl
where
Tonm,z) = (b= bp)Gon,m) + (5 — 2% )G i(nm—1),  (24)
J_(n,m,z_) = —(b+bp)G_(n,m) + (% —2a2))G_(n,m +1). (2.5)

Applying to equations (2.3)—(2.5) the method of successive approximations (see,
for example, [6]) we obtain, that the functions fi=(z+) as the functions of variables
z+ are holomorphic in the domains D* \ {0}, continuous till the boundaries T
and

Lemma 2.1 ([6, 10]). The estimates hold

25" fa (24) — i_[ (2a;)71 < Clz4] +Z iml{lam —1/2| + [bm — bl}, |24 <1,
~ o (2.6)
n—1 m=n
|22 fo (2-) — 'H (20) 71 < Clz=| Y Iml{lam —1/2] + bm + b}, |2-] <1,
F—oo h (2.7)

where C is some constant, depending on inf, a,, b, |L — Lg|| and the sum in
right-hand side of inequality (1.2).
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From estimates (2.6), (2.7) it follows that the functions f* as functions of
spectral parameter A are analytic in the domain C\ [-1 + b,1 — b] and their
Wronskian W()) is also analytic function at the same domain, continuous till
boundary. Its behavior as A — oo is studied in Lemma 2.3 below. Estimates
(2.6), (2.7) imply also representation (1.8), where

2w

Ka(nm) = oo [ £ evmds (2.8)
0

are the coefficients of the transformation operators. From (2.8) it follows that
LK:t = K:t Lo,i, where

1 1
(Lo+Y)n = Yn—1+ QYnt1 + byn- (2.9)

2
The comparison of the main diagonal entries in these equalities imply the repre-
sentation for the coefficients of operator L through the transformation operators
elements:

K.(n+1,n+1) K_(n,n)

2a, = = 2.10
fin K, (n,n) K (n+1,n+1) (2.10)

1
b, Fb= g(fci(n,nil) — k+(nF1,n)), (2.11)

where we denote
Kﬂ:(nam)

= 2.12
K+ (’I’l, m) K:I: (’I’L, n) ( )

Note, that from formulas (2.10) and from asymptotic behavior of coefficients a;
it follows that

+00 n—1
K (n,n)= H(Zaj)fl, K_(n,n) = H(Zaj)fl, (2.13)

and, therefore, the product

400
K. (n,n) K_(n,n) = [ (2a;)™" (2.14)

—oQ

does not depend on n (see property D).
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Lemma 2.2 ([10]). Let +m > £n. Then the estimate is valid

+oo
1
Ketrm)] <€ % (lan— g1+ IbaFbl). (2.15)
[m+;1:|:1]

where the constant C is of the same nature as the constant from Lemma 2.1.

The following lemma studies the asymptotic behavior of the Wronskian W ()
as A = oo (i.e., zx — 0).

Lemma 2.3. The asymptotic behavior holds as z+ — 0

+o0 —1 +o0
2(f, f7) = [[2a)) " {zx' =200 (ba +b) + > (bn — b))} + O(2z). (2.16)
T oo —o0 0

Proof Since Z;—J‘r =14 O(z4) as 2z — 0 then due to (2.12)-(2.14) we

have
0

+00
2<f+, f_>—1 = 2(1_1{ Z K+(—1,m)Z_T Z K_(O,l)z:l

m=—1 l=—00
+00
- Y K (0,m)zT Z K_ 221} =241 Ky (—1,-1) K_(0,0){z;"
m=0 l=—00
+r4(—=1,0) + £-(0,—1)} + O(z4).
By (2.11)
1 +00 1 -1
5"7-1—(_1’0) :Z(b_bn)a 5”—(0’_1) = _Z(b+bn)a
0 —00

that implies formula (2.16).
The proof of properties A, B and C can be done now by standard approach.
From the scattering relations (1.9) it follows that

5 AR )
CTRE A TR Y 247
and since f¥(z1) = f*(23'), as z+ € T* and
(£, ) = 453 — ), (218)
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the relations (1.9)—(1.16) follow immediately. The analytical properties of the
Jost solutions imply relevant properties of their Wronskian W (X). Since the
discrete spectrum of operator coincides with the set of zeros of this Wronskian, it
can have the only accumulation points at the edges of continuous spectrum. But
from Lemma 2.1, using the same arguments as in [7, p. 266-269], we obtain, that
the discrete spectrum is finite.

Property D follows from Lemma 2.3 and (1.18).

Consider now the behavior of the function W () at the edges of continuous
spectrum. Note, that W(A) # 0 as A € (=1 +b,1 —b). It follows from the
independence of solutions fF, fas A€ (—1Fb, 1Fb). At the points A = —1+b
and A = 1 — b the Wronskian W () can have zeros (so called resonance cases),
but of the order not more then 1/2.

Lemma 2.4. In the resonance case, when W(X) =0 at A= —1+b (or, resp.,
A=1-—"0) then % =1 #0 (resp., (‘g‘j ‘Z_:l #0).

Proof. Let, for example, W(—1+0b) =0. Put 2. = Z_(—1+b). Then
f-((22) € 12(2.*). Since Z1(—1+4b) = —1 and % sy =0 then the vectors
fr(=1) and f*(-1) = ﬁf*’(—l) are independent solutions of equation (1.2)
and ) )

+ 1\ 1 : n n 2ny _ =
(77 =g im | lim (23 (n+ 1)z} —nei?) = 5.
If W(—1+b) =0 then fT(—1) = Cf~(2_), where C # 0. Let N be a big natural
number. Then

aw

Tl = U5 P o+ U, ) w = 071 )
1 dz s—2N —2N-1 -
2C g e BT+ OGTT) = O
since Zz—; 1= 0.

Lemmas 2.1, 2.4, formulas (2.17), (1.18) imply property C and the following

Corollary 1. Let

1 1
SE T 1 (s +i0)[ (2.19)

ht(zy) = =
(:I:) 222’;1—Z:|:

where zz = Zz (A2 +10)). These functions are continuous and positive on the
upper side of cut A(jf \{2+} and are L' —integrable at the points 24 = Z.(£1FDb).
Moreover, h*(£1) = 0.
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Consider the connection between + and — norming constants, defined by
formula (1.14). By standard approach (see, for example, [6] or [1]) we obtain
that %(z\k) # 0 and, therefore, the discrete spectrum is simple. The eigenvec-
tors f*(z4 ) and f~(z_j) are dependent with some constants di, fF(zzx) =
dF f£(24.1). Following [11], we obtain then that

1AW dX

R i — (21 k) = E(Zi,k)(af)ﬂa (2.20)

that implies formula (1.14).
To prove the property E represent the Marchenko equation (1.20) in the form

+oo
ki(n,m)+ Fi(n+m)+ Z ke(n,)Fr(l+m)=0, +m>=+n, (2.21)
l=nxl
1 +o0
——— =1+ F1(2n) + kx(n,l)Fy(l+n), (2.22)

where the functions k4(n,m) and Fi(n) are defined by (2.12) and (1.21) respec-
tively. The further considerations are identical for both half-axes and we give
them only for positive half-axis, omitting the sign + for simplicity.

Let n, s be some fixed large natural numbers and s > n. Summing (2.21), we

have
Z|Fn+m|<2\ﬁnm|+z Z|F ) |k(n, )]

l=n+1m=s+l

Changing the sums in the last summand, we obtain

DIEm)IL— Y s D) < Y Ik(n,m)l.
m=s I=n+1 m=n+1

From Lemma 2.2 and (2.13) it follows that the right hand side of this equality is
finite, and, therefore, for some ny,

Z |[Fy(m)| < oo. (2.23)

m=ngo

The proof of estimate (1.25) we also give for right half-axis. Consider two
cases: odd and even arguments of function F'(n). Prove, first, the estimate

S IF25 +1) - F(25 — 1)] < o. (2.24)

Jj=no
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Subtract from equation (2.21) with n = j, m = j + 1 the same equation with
n=j—1,m=j. Since by (2.11) k(4,7 +1) — s(j — 1,7) = 2(b; — b) then

|F(2j+1)—F(2j-1)| <2[b;—b|+ > |[6(i—1L,DF(+0)|+ > |(G,I-1)F(G+1)|
I=j l=j+1

Multiplyingthis inequality by j, summing and using (1.2) and (2.23), we obtain
(2.24).
To prove that

> GlIF (25 +2) — F(25)] < oo. (2.25)

Jj=no

we use the difference between equations (2.22) taken as n = j+ 1 and n = j.
Then

|F(2j+2) = F(25)| < [K72(,5) = K2+ 1,5+ DI+ Y lo((n+1)")F( +1)-
I=j

From (2.10) we see that

|K=2(j,5) — K2(j + 1,5 + 1) < [4a2 — 1] Const(inf a)

and from (2.23) and (1.2) inequality (2.25) follows. Since |z4 x| < 1 it is evident,
that the part Fi, corresponding to the discrete spectrum in the kernel of the
Marchenko equation, satisfies the estimate

+oo
> [nl|FE(n +2) — Fi(n)] < co.

n=ngo

The corollary to Lemma 2.4 implies the same estimate for the function H(n),
defined by formula (1.26), that proves (1.25).

In fact, the considerations, concerning to proofs of (2.23)—(2.25) are invertible.
Namely, from the same reasons as above, the following result is valid

Lemma 2.5. Let some real-valued functions Fy(n) are such that

+o0
D [n||Fe(n + 2) — Fi(n)| < oo, (2.26)

n=no
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and let corresponding equation (1.20) has the unique solution Ki(n,m). Then
the following estimates are valid

0< in%Ki(n,n) <supKi(n,n) < oo,
ne

neZ
+oo
D Ire(n, )] < oo,
l=n+1

+oo
Z In||ke(n,n+1) — kr(n—1,n)| < oo,
n=no
+oo
Z In||K3(n+1,n+1) — Ki(n,n)| < oco.
n=ng

Corollary 2. Under the conditions of lemma 2.5 formulas (2.10)-(2.11) im-
ply the condition (1.2).

3. The inverse scattering problem

Consider an arbitrary collection
{Ry(24), Ty (21), R—(2-), T—(2-) (22 € TF), Ay, ... Apy - ,a;'}, (3.1)

satisfying the conditions A-E. From this collection we construct due to (1.16),
(1.18) and (1.14) the (-)-norming constants and the functions Fy(n,m) by for-
mula (1.21). Consider the solutions K4 (n, m) of equations (1.20), where n plays
the role of a parameter and the equations are considered in the spaces ll(Zn,ioo)
correspondingly. To prove the existence and uniqueness of such solutions,consider
corresponding homogeneous equations.

Lemma 3.1. Let the functions Fiy(m) be defined by formula (1.21) with scat-
tering data, satisfying the conditions A — C. Then the equation

+oo
$m+ Y, Fi(m+D)p =0
l=n+1
has no nontrivial solutions in the class I* (Z[n,:l:oo)) for any fized n € Z .

Proof. Since ¢ €l! (Z[n,ioo)) then ¢ € 12 (Z[n’ioo)) and, therefore,

+oo L +oo +oo L
m=xn=£l m=n=xll=nt1
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Put ¢ = 0 as £m < £n and use the Parseval equality . Since the contribu-
tion of summands, corresponding to functions F¢ = Fy — F¢ and Hy, defined by
(1.21)—(1.16), is nonnegative, then, following [7], we obtain the inequality

o - m () <o

where

+oo

$£(0) = > pmeT™. (3.2)

m=n=£1

Since |R+(2z+)| < 1 as 24 € AT then $(#) = 0 on some part of circumference.
But due to (3.2) this function can be continued analytically out of unit disk.
Therefore, ¢, = 0 as £m > +n.

Corollary 3. The operator I + Ff defined by the formula

+o0

{I+F)ptm =dm+ > Frll,m)gy (3.3)

l=n=£l
is invertible. The Marchenko equation (1.20),(1.21) has a unique solution.

Lemma 3.2. Let Fiy(m) be the same as in Lemma 3.1 and let Ky (n,m) be
the solutions of (1.20). Put

Ki(n+t1l,n+1)

Bt (m) = 2 (s (05 1,m) + ks (n % 1,m) — e (nym F 1)

Kyi(n,n)
—ki(n,m+1)+ (kx(n,n+1) —ke(nF1,n))ks(n,m)), (3.4)
Then
+o0
$n(m)+ Y n()Fs(l+m) =0, (35)
l=n*1

Proof of this lemma is a slight modification of proof of Theorem 3.3.1 ([7]),
and we omit it.

Note, that by Lemma 3.1 from (3.5) it follows that ¢ (m) =0 as +m > +n.
It is easy to verify that it is equivalent to equality

LiKy =KiLo+,

200 Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 2



The scattering problem for step-like Jacobi operator

where the coefficients of Jacobi operators Ly are defined as

1K (n+1,n+1) 1 K_(n,n)
+ _ -+ ’ _ - ;
I =3 Ki(n,n) ~’ On 2K (n—1,n—1)" (36)
Ki(n,n+1) K,(n—1,n)
by =b+ —— - : 3.7
" + 2K (n,n) 2K, (n—1,n—1)’ (37)
K_ -1 K_ 1
by = b ) (n+1,n) (3.8)

2K_(n,n) 2K_(n+1,n+1)

forall n € Z.

Lemma 3.3. Let the conditions A-E be satisfied. Then for any A € C the
functions

+oo
fif(z2) = Y Kx(n,m)zE™ (3.9)
satisfy the equations
(LefF)n = M, (3.10)

where zy is defined by (1.4). The coefficients of operators Ly are defined by
formulas (3.6)—-(3.8) and satisfy the conditions

+oo

1
Z |n|{\aﬁf—§|+|b§ib|} < . (3.11)

n=no

The result of this lemma follows immediately from Lemmas 3.2, 2.5. To
establish, that L, = L_ we have to prove, that functions (3.9) are connected by
scattering relations (1.8) with given scattering data (3.1).

According to the condition E the functions R (-) and

+oo
Oi(n,) =Y Ki(n,)Re(l+")

I=n

belong to the space I2(Z) for any fixed n. Moreover,

+o0
3 0 (n,m)e™ ™ = Ra(e?) . Ka(n, et = Ru(e?)fE().  (3.12)
meEZ l=n
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On the other hand, by equation (1.20) for +m > +n and z = ¢ we have

Foo +oo (5(’)1 m)
Z & (n,m)zT" = Z Dy (n,m)zT™ + Z: ZTm {m — Ki(n,m)
MEZL m=nF1 m=n
+oo p e +oo 1 +1
-3 Ken) Y@ S Kaln ) [ ha(c ™ ac
F Fn _
— Fm < et
Z Qi(n’ m)z + K:}:(n, n) fn (Z)
m=nF1
) +oo +oo 1 *1
Y@ eag) Y (g E S [ ha(O QG
7j=1 m=n m=n P
(3.13)
Comparing (3.12) with (3.13), we obtain the equalities
Ri(2)fi (2) + fi(2) = T (2)g5 (2), 2 €T, (3.14)
where .
Fn 1 x
F — 4 i) +nFm
+1
p +n +n—1
B 2k (BEg) z NS
F Y i) T [ 05— d<>. (3.15)
— 2

The functions g; are defined on the sets T* correspondingly and can be continued
to the domains P* with singularities on the bands of cuts of A(jf, in the points of
discrete spectrum and in the point 0. Determine the character of singularities of
these functions at the point z4+ j, j = 1,...,p. By (1.3) and (1.18)

1
: + _ e ) 2 g
zl}gﬁ] g (2) = —Eifn(ag)(ey) zl}ﬁ; T*(2) (2 — 24,)
aw

Therefore, the functions g have removable singularities at the points 24 .

From the property E it follows that sup,, E;Fno:onq:l |®4(n,m)| < co and, thus

gt €l?(Z%) as zp € PT\ {0} (3.17)
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From equality (3.14) it follows that
(1= |R<P) f = T*gi — R:T*g],

and by (1.12) as z4+ € AT one has

-1
z 2%
TP ff =% = T+gi — RaT*g;.
Z+ — 2%

Therefore, due to (1.16) and (1.13)

+ Ry 2 — 2y +
Tiﬁ—gn + Regy, 2+ € A7
:F

T:Ffi :F T:Fg

and eliminating the reflection coefficients from (3.14) we obtain the equalities

TH(fa fT —9m9n) = (9n f§ — fAoF), 22 € AT (3.18)
When 21 € AT then zz = Z+(Z1(2+)) € A, and from (1.10) and (1.11) it
follows that

fn

TR, N\ +
gr (25 +140) — g7 (25 —i0) = Tifn-l-——(%fni)_fi

7z
i.e., the functions g, have no jumps along the set A(:)t.
The further considerations are identical for (4) and (-) equalities (3.18) and

we give them for (+)-case. Consider the function
sn(24) =T (f fr = 93 9%)
which is equal to
=Gn f+ f?g;f aszy € AT. (3.19)

The function s, can be continued as meromorphic function inside the
domain P*. Consider possible singularities of this function. Since (f,5f,,;)(0) =
Ki(n,n)K_(n,n) and, by (1.19), (3.15) (g;g;)(0) = (T*(0)T~(0)K(n,n)
xK_(n,n))"! = Ky (n,n)K_(n,n) then s,(0) = 0. From (3.16) and (1.14) it fol-
lows that this function has removable singularities at the points z4 k- Determine,
what jump it has on the set A+ Since the functions f, and g;” have no jumps on
this set, we consider the functlons T+ f and T*g, . According to (1.16), (1.10),
(3.14) and(l.ll), we have

T e i0) = T e = 0) = S (T )

1
Zy — 2 o _ —_ 2y —
=z_72+_1(T fo +1T7Pgf —R-T fn):z_7|T 2955 (24 + 0).
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From the other side, the only summand, having the jump in the representation
(3.15), is

1
Sy YR

fin(2) = T z—¢&

Z4

From formula (2.19) using the Cauchy theorem, we have

1
. . 24 —Z .
hn(z+ +10) — hn(z4 — i0) = —;_7;1|T+|2f:(z+ +140).

Therefore, due to (1.16)
sn(zy +10) — sp(2 —i0) = f,FgH(TYT— +T7T+) = 0.

Thus, the function s,(z) is holomorphic function on the unit disk D", s,(0) = 0.
Due to (3.19) this function is odd as z € A : sp(z7!) = —sn(z) . These
properties allow us to continue the function s, in the domain C\ D. Since it is
holomorphic in C and s,(z) — 0 as z — oo, then by the Liouville theorem we

have equalities g g- = f.F f= and g7 f7 = fifg;. Applying now the arguments
of [7, p. 279], we see that g& = fF and, therefore, scattering relations (1.9) are
fulfilled. Theorem 1.1 is proved.
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