Functional models for almost periodic Jacobi matrices and the Toda hierarchy

V Vinnikov

Department of Mathematics, Ben-Gurion University P.O.Box 653, Beer-Sheva, 84105, Israel E-mail:vinnikov@cs.bgu.ac.il

P. Yuditskii

Department of Mathematics, Michigan State University
East Lansing, MI 48824, USA
E-mail:yuditski@math.msu.edu
Received February 19, 2002
Communicated by V.A. Marchenko

We construct and solve a class of evolution equations for (almost periodic) Jacobi matrices which contains as a special case the well known Toda hierarchy. Our construction arises naturally within the framework of functional models on a Riemann surface for almost periodic Jacobi matrices.

1. Introduction

We first recall the Toda hierarchy (see, e.g., [7]). We fix an arbitrary polynomial p(z) with real coefficients (it is usually normalized to have leading coefficient 1 and free coefficient 0). For any bounded doubly infinite self adjoint Jacobi matrix J (a tridiagonal matrix, where we assume as usual that the elements on the diagonals above and below the main one are real and positive) we set $M_p(J) = p(J)$ and decompose the matrix $M_p(J)$ (which has a finite number of non zero diagonals) into a sum of an upper triangular matrix $M_p^+(J)$ and of a lower triangular matrix $M_p^-(J)$ with $M_p^+(J) = (M_p^-(J))^*$. We then define

$$\widetilde{M}_p(J) = M_p^+(J) - M_p^-(J)$$

(which is obviously a bounded skew self adjoint operator on $l^2(\mathbb{Z})$), and the equation corresponding to the polynomial p(z) in the Toda hierarchy is given by

$$\dot{J} = [\widetilde{M}_p(J), J]. \tag{1}$$

Mathematics Subject Classification 2000: 35Q58 (Primary), 47A48, 47B36 (Secondary).

Of course, the equation (1) can be rewritten as a system of difference-differential evolution equations for the entries of the Jacobi matrix J. (The usual Toda chain corresponds to p(z) = z.)

Theorem 1.1. [7]. Suppose J_0 is a bounded doubly infinite self adjoint Jacobi matrix. Then there exists a unique integral curve $t \mapsto J(t)$ of the Toda equations, that is, (1) holds and $J(0) = J_0$.

In the case when J_0 is almost periodic with the spectrum E consisting of a finite union of intervals (the finite band case, see, e.g., [2, 7]), it is well known that the evolution equations of the Toda hierarchy are (uniquely) solvable on all of \mathbb{R} , with the solution J(t) being again almost periodic for all t. Furthermore, almost periodic Jacobi matrices with spectrum E are naturally parametrized by a finite dimensional torus (the real part of the Jacobian variety of the associated compact hyperelliptic Riemann surface), and the evolution equation (1) corresponds to a linear evolution on the torus in the direction determined by the polynomial p(z).

We shall establish similar results for the evolution equation (1) for an arbitrary almost periodic Jacobi matrix J_0 whose spectrum E (containing, in general, an infinitely many gaps) satisfies the so called homogeneity condition (see Section 2 below for a precise definition). We first recall from [6] the parametrization of almost periodic Jacobi matrices with a given homogeneous spectrum.

Theorem 1.2. There is a continuous one-to-one correspondence between almost periodic Jacobi matrices with homogeneous spectrum E and characters on the group $\Gamma = \pi_1(\mathbb{C}\backslash E)$.

Here, the group of characters Γ^* substitutes the real part of the Jacobian variety of the hyperelliptic Riemann surface of finite genus when E is a system of intervals (and the corresponding Riemann surface is the double of $\overline{\mathbb{C}}\backslash E$). The correspondence of Theorem 1.2 is given by associating to each character the operator of multiplication by the planar variable z in the character automorphic L^2 space with this character — see Section 2 for details.

In fact, in this general setting it is natural to extend Toda hierarchy (the question arose in a discussion with Fritz Gesztezy). Let J_0 be a bounded self adjoint Jacobi matrix with absolutely continuous spectrum, and denote by E the spectrum of J_0 . We fix an arbitrary function $a \in L^{\infty}(E,\mathbb{R})$ and for any bounded self adjoint Jacobi matrix J with absolutely continuous spectrum whose spectrum is contained in E we set $M_a(J) = a(J)$ (in the sense of the standard functional calculus for self adjoint operators). We decompose the matrix $M_a(J)$ into a sum of an upper triangular matrix $M_a^+(J)$ and of a lower triangular matrix $M_a^-(J)$ with $M_a^+(J) = (M_a^-(J))^*$ (here * denotes simply the formal adjoint of a doubly infinite matrix). Notice that these two matrices do not define in general bounded

operators on $l^2(\mathbb{Z})$, but at any rate they do define unbounded operators with domains containing finitely supported sequences (since their action on the standard basis vectors yields simply the columns of $M_a(J)$ truncated to the positive or the negative indices respectively). We now define

$$\widetilde{M}_{a}(J) = M_{a}^{+}(J) - M_{a}^{-}(J);$$

this is a generally unbounded skew self adjoint operator on $l^2(\mathbb{Z})$ whose domain contains finitely supported sequences. When the function a is a polynomial we recover the evolution equations of the Toda hierarchy as described above.

The following is our main result.

Theorem 1.3. Let J_0 be an almost periodic Jacobi matrix with homogeneous spectrum E and let $a \in L^{\infty}(E, \mathbb{R})$. Then the evolution equation (1) with initial condition J_0 is solvable on all of \mathbb{R} . For all t, J(t) is an almost periodic Jacobi matrix with spectrum E. If $\alpha(t) \in \Gamma^*$ (where $\Gamma = \pi_1(\mathbb{C}\backslash E)$) is the character corresponding to J(t), and $\alpha_0 \in \Gamma^*$ is the character corresponding to J_0 , then

$$\alpha(t) = \alpha_0 \cdot \exp(-t\xi).$$

Here $\xi: \Gamma \to i\mathbb{R}$ is the homomorphism corresponding to the additive periods of the function \widetilde{a} which is harmonic conjugate to the harmonic continuation of a from E to $\overline{\mathbb{C}}\backslash E$.

The idea behind the proof of the theorem is that the solution of the evolution equation (1) produces a pair of commuting operators $\frac{d}{dt} + \widetilde{M}_a(J(t))$ and J(t) on an appropriate space of $l^2(\mathbb{Z})$ -valued functions. These operators admit a functional model in the Γ' (the commutator of the group Γ) automorphic L^2 space given by multiplication by \widetilde{a} and multiplication by z respectively. The decomposition of the Γ' automorphic L^2 space into a direct integral of Γ character automorphic L^2 spaces (see [8]) provides a link with functional models for individual Jacobi matrices mentioned above.

2. Functional model

Let S be the shift in $l^2(\mathbb{Z})$. We remind that a Jacobi matrix J is said to be almost periodic if the set of operators $\{S^{-n}JS^n\}_{n\in\mathbb{Z}}$ is a precompact in the operator topology [1, 5].

Let G be a compact Abelian group, $p(\alpha)$ and $q(\alpha)$ be continuous real-valued functions on G and $p(\alpha) > 0$. For a fixed $\tau \in G$, define $T\alpha = \tau \alpha$. Evidently, the Jacobi matrix $J(\alpha)$ of the form

$$(J(\alpha)x)_n = p_n(\alpha)x_{n-1} + q_n(\alpha)x_n + p_{n+1}(\alpha)x_{n+1}, \quad x = \{x_n\}_{n=-\infty}^{\infty} \in l^2(\mathbb{Z}),$$
(2)

where $p_n(\alpha) = p(T^n\alpha)$ and $q_n(\alpha) = q(T^n\alpha)$, is almost periodic. Moreover, an arbitrary almost periodic matrix can be obtained by this construction with a suitable choice of G, τ , $p(\alpha)$, $q(\alpha)$ and α .

Let us note that the structure of $J(\alpha)$ is described by the following identity

$$J(\alpha)S = SJ(T\alpha). \tag{3}$$

The last relation indicate strongly that it would be only natural to associate with the family of matrices $\{J(\alpha)\}$ a pair of commuting operators.

Let $L^2_{d\chi}(l^2(\mathbb{Z}))$ be the space of $l^2(\mathbb{Z})$ -valued vector functions, $x(\alpha) \in l^2(\mathbb{Z})$, with the norm

$$||x||^2 = \int_C ||x(\alpha)||^2 d\chi,$$

where $d\chi$ is the Haar measure on G. Define

$$(\widehat{J}x)(\alpha) = J(\alpha)x(\alpha), \quad (\widehat{S}x)(\alpha) = Sx(T\alpha), \quad x \in L^2_{dy}(l^2(\mathbb{Z}))$$

Then (3) implies

$$(\widehat{J}\widehat{S}x)(\alpha) = J(\alpha)Sx(T\alpha) = SJ(T\alpha)x(T\alpha) = (\widehat{S}\widehat{J}x)(\alpha).$$

Further, \widehat{S} is a unitary operator and \widehat{J} is selfadjoint. The space $L^2_{d\chi}(l^2(\mathbb{Z}_+))$ is an invariant subspace for \widehat{S} . It is not invariant for \widehat{J} but it does for the product $\widehat{J}\widehat{S}$. Let us put

$$\widehat{S}_+ = \widehat{S}|L^2_{d\chi}(l^2(\mathbb{Z}_+)), \quad (\widehat{J}\widehat{S})_+ = \widehat{J}\widehat{S}|L^2_{d\chi}(l^2(\mathbb{Z}_+)).$$

We are interested in a functional model, where \widehat{S}_{+} and $(\widehat{J}\widehat{S})_{+}$ became operators multiplication by functions in a functional space on an appropriate Riemann surface.

We say that a pair of commuting operators \widehat{S}_+ and $(\widehat{JS})_+$ has a (local) functional model if there is a unitary embedding of the space $L^2_{d\chi}(l^2(\mathbb{Z}_+))$ in a space X_O , consisting of holomorphic in some domain O functions $F(\zeta)$, $\zeta \in O$, with a reproducing kernel $(F \mapsto F(\zeta_0), \zeta_0 \in O$, is a bounded functional in X_O) and under this embedding the operators became a pair of operators multiplication by holomorphic functions, say

$$\widehat{S}_+ x \mapsto b(\zeta) F(\zeta), \quad (\widehat{J}\widehat{S})_+ x \mapsto \lambda(\zeta) F(\zeta).$$

In fact, such assumptions imply quite strong consequences. Let k_{ζ} be the reproducing kernel in X_O and let \hat{k}_{ζ} be its preimage in $L^2_{d_X}(l^2(\mathbb{Z}_+))$. Then

$$\langle \widehat{S}_{+}^{*} \hat{k}_{\zeta}, x \rangle = \langle \hat{k}_{\zeta}, \widehat{S}_{+} x \rangle = \langle k_{\zeta}, bF \rangle. \tag{4}$$

By the reproducing property

$$\langle k_{\zeta}, bF \rangle = \overline{b(\zeta)F(\zeta)} = \langle \overline{b(\zeta)}k_{\zeta}, F \rangle.$$

So, we can continue (4) in the following way

$$\langle \widehat{S}_{+}^{*} \widehat{k}_{\zeta}, x \rangle = \langle \overline{b(\zeta)} \widehat{k}_{\zeta}, x \rangle.$$

That is \hat{k}_{ζ} is an eigenvector of \widehat{S}_{+}^{*} with the eigenvalue $\overline{b(\zeta)}$. In the same way, \hat{k}_{ζ} is an eigenvector of $(\widehat{J}\widehat{S})_{+}^{*}$ with the eigenvalue $\overline{\lambda(\zeta)}$.

Thus, if a functional model exists then the spectral problem

$$\begin{cases}
\widehat{S}_{+}^{*} \hat{k}_{\zeta} &= \overline{b(\zeta)} \hat{k}_{\zeta} \\
(\widehat{J}\widehat{S})_{+}^{*} \hat{k}_{\zeta} &= \overline{\lambda(\zeta)} \hat{k}_{\zeta},
\end{cases} (5)$$

has a solution \hat{k}_{ζ} with an anti-holomorphic dependence of ζ . Viceversa, if (5) has a solution of this kind, and the system of eigenvectors $\{\hat{k}_{\zeta}\}_{\zeta\in O}$ is complete in $L^2_{d_X}(l^2(\mathbb{Z}_+))$ then we put

$$F(\zeta) = \langle x, \hat{k}_{\zeta} \rangle, \quad ||F||^2 = ||x||^2,$$

and this provide a local functional model for the pair \widehat{S}_+ , $(\widehat{J}\widehat{S})_+$.

At least, under some assumptions on the spectrum of an almost periodic Jacobi matrix we can present $a\ global$ functional model of this kind. To this end we need some definitions and notation.

A real compact E is homogeneous if there is an $\eta > 0$ such that

$$|(x - \delta, x + \delta) \cap E| \ge \eta \delta$$
 for all $0 < \delta < 1$ and all $x \in E$. (6)

By J(E) we denote the class of all almost periodic Jacobi matrices with absolutely continuous spectrum E.

Let $z(\zeta): \mathbb{D} \to \Omega$ be a uniformization of the domain $\Omega = \bar{\mathbb{C}} \setminus E$. Thus there exists a discrete subgroup Γ of the group SU(1,1) consisting of elements of the form

$$\gamma = egin{bmatrix} \gamma_{11} & \gamma_{12} \ \gamma_{21} & \gamma_{22} \end{bmatrix}, \ \gamma_{11} = \overline{\gamma_{22}}, \ \gamma_{12} = \overline{\gamma_{21}}, \ \det \gamma = 1,$$

such that $z(\zeta)$ is automorphic with respect to Γ , i.e., $z(\gamma(\zeta)) = z(\zeta)$, $\forall \gamma \in \Gamma$, and any two preimages of $z_0 \in \Omega$ are Γ -equivalent. We normalize $z(\zeta)$ by the conditions $z(0) = \infty$, $(\zeta z)(0) > 0$.

Condition (6) implies that Γ acts dissipatively on \mathbb{T} with respect to the Lebesgue measure dm, that is there exists a measurable (fundamental) set \mathbb{E} ,

which does not contain any two Γ -equivalent points, and the union $\cup_{\gamma \in \Gamma} \gamma(\mathbb{E})$ is a set of full measure. For the space of square summable functions on \mathbb{E} (with respect to dm), we use the notation $L^2_{dm|\mathbb{E}}$.

A character of Γ is a complex-valued function $\alpha:\Gamma\to\mathbb{T}$, satisfying

$$\alpha(\gamma_1\gamma_2) = \alpha(\gamma_1)\alpha(\gamma_2), \quad \gamma_1, \gamma_2 \in \Gamma.$$

The characters form an Abelian compact group denoted by Γ^* .

Let f be an analytic function in \mathbb{D} , $\gamma \in \Gamma$. Then we put

$$f|[\gamma]_k = \frac{f(\gamma(\zeta))}{(\gamma_{21}\zeta + \gamma_{22})^k} \quad k = 1, 2.$$

Notice that $f|[\gamma]_2 = f$ for all $\gamma \in \Gamma$, means that the form $f(\zeta)d\zeta$ is invariant with respect to the substitutions $\zeta \to \gamma(\zeta)$ $(f(\zeta)d\zeta)$ is an Abelian integral on \mathbb{D}/Γ). Analogically, $f|[\gamma] = \alpha(\gamma)f$ for all $\gamma \in \Gamma$, $\alpha \in \Gamma^*$, means that the form $|f(\zeta)|^2 |d\zeta|$ is invariant with respect to these substitutions.

We recall, that a function $f(\zeta)$ is of Smirnov class, if it can be represented as a ratio of two functions from H^{∞} with an outer denominator. The following spaces related to the Riemann surface \mathbb{D}/Γ are counterparts of the standard Hardy spaces H^2 (H^1) on the unit disk.

Definition 2.1. The space $A_1^2(\Gamma, \alpha)$ $(A_2^1(\Gamma, \alpha))$ is formed by functions f, which are analytic on $\mathbb D$ and satisfy the following three conditions:

$$\begin{array}{l} 1)f \ \ is \ of \ Smirnov \ class, \\ 2)f|[\gamma] = \alpha(\gamma)f \quad (f|[\gamma]_2 = \alpha(\gamma)f), \quad \forall \gamma \in \Gamma, \\ 3)\int\limits_{\mathbb{R}} |f|^2 \, dm < \infty \quad (\int\limits_{\mathbb{R}} |f| \, dm < \infty). \end{array}$$

 $A_1^2(\Gamma,\alpha)$ is a Hilbert space with the reproducing kernel $k^{\alpha}(\zeta,\zeta_0)$, moreover

$$0 < \inf_{\alpha \in \Gamma^*} k^{\alpha}(\zeta_0, \zeta_0) \le \sup_{\alpha \in \Gamma^*} k^{\alpha}(\zeta_0, \zeta_0) < \infty.$$
 (7)

Put

$$k^{\alpha}(\zeta) = k^{\alpha}(\zeta, 0)$$
 and $K^{\alpha}(\zeta) = \frac{k^{\alpha}(\zeta)}{\sqrt{k^{\alpha}(0)}}$.

We need one more special function. The Blaschke product

$$b(\zeta) = \zeta \prod_{\gamma \in \Gamma, \gamma \neq 1_2} \frac{\gamma(0) - \zeta}{1 - \overline{\gamma(0)}\zeta} \frac{|\gamma(0)|}{\gamma(0)}$$

is called the *Green's function* of Γ with respect to the origin. It is a character–automorphic function, i.e., there exists $\mu \in \Gamma^*$ such that $b(\gamma(\zeta)) = \mu(\gamma)b(\zeta)$. Note, if $G(z) = G(z, \infty)$ denotes the Green's function of the domain Ω , then

$$G(z(\zeta)) = -\log|b(\zeta)|.$$

Let Γ' be the commutator of the group Γ . Evidently, $b(\zeta)$ and $(zb)(\zeta)$ are functions on the surface \mathbb{D}/Γ' . It is convenient to accept the normalization condition (zb)(0) = 1.

Theorem 2.2. Let E be a homogeneous set. The set J(E) can be represent in the form (2) with $G = \Gamma^*$, $T\alpha = \mu^{-1}\alpha$ and

$$p(\alpha) = \left(\frac{K^{\alpha}}{K^{\alpha\mu}}\right)(0), \quad b'(0)q(\alpha) = (zb)'(0) + \left(\log\frac{K^{\alpha}}{K^{\alpha\mu}}\right)'(0). \tag{8}$$

The operators \widehat{S}_+ and $(\widehat{J}\widehat{S})_+$ are unitary equivalent to multiplication by b and (bz) in $A_1^2(\Gamma')$ respectively. This unitary map is given by the formula

$$\sum_{\{\gamma\}\in\Gamma/\Gamma'}f|[\gamma]\alpha^{-1}(\gamma)=\sum_{n\in\mathbb{Z}_+}x_n(\alpha)b^nK^{\alpha\mu^{-n}},$$

where $f \in A_1^2(\Gamma')$ and the vector function $x(\alpha) = \{x_n(\alpha)\}$ belongs to $L^2_{d\chi}(l^2(\mathbb{Z}_+))$.

Proof. The statement follows immediately from the *individual* functional model for $J(\alpha)$ that was given in [6] and the decomposition

$$A_1^2(\Gamma') = \int_{\Gamma^*} A_1^2(\Gamma, \alpha) \, d\chi \tag{9}$$

that was proved in [8]. In fact, this decomposition means that for any $f \in A_1^2(\Gamma')$ the series

$$F(\zeta, \alpha) = \sum_{\{\gamma\} \in \Gamma/\Gamma'} (f|[\gamma])(\zeta)\alpha^{-1}(\gamma)$$
(10)

define a function which belongs to $A_1^2(\Gamma,\alpha)$ for a.e. α and

$$||f(\zeta)||^2 = \int_{\Gamma^*} ||F(\zeta, \alpha)||^2_{A_1^2(\Gamma, \alpha)} d\chi(\alpha),$$

moreover

$$f(\zeta) = \int_{\Gamma^*} F(\zeta, \alpha) \, d\chi(\alpha). \tag{11}$$

Conversely, we can start from any $F(\zeta, \alpha) \in \int_{\Gamma^*} A_1^2(\Gamma, \alpha) d\chi$; then we get an element $f(\zeta) \in A_1^2(\Gamma')$ by (11) and we can restore $F(\zeta, \alpha)$ by (10).

The individual functional model looks as follows. The systems of functions $\{b^nK^{\alpha\mu^{-n}}\}_{n\in\mathbb{Z}_+}$ and $\{b^nK^{\alpha\mu^{-n}}\}_{n\in\mathbb{Z}}$ form an orthonormal basis in $A_1^2(\Gamma,\alpha)$ and in $L^2(\Gamma,\alpha)\simeq L^2_{dm|\mathbb{E}}$, respectively, for any $\alpha\in\Gamma^*$. With respect to this basis, the operator multiplication by z(t) is a three-diagonal almost periodic Jacobi matrix, moreover

$$zb^{n}K^{\alpha\mu^{-n}} = p_{n}(\alpha)b^{n-1}K^{\alpha\mu^{-n+1}} + q_{n}(\alpha)b^{n}K^{\alpha\mu^{-n}} + p_{n+1}(\alpha)b^{n+1}K^{\alpha\mu^{-n-1}},$$

with $p(\alpha)$ and $q(\alpha)$ given by (8). And conversely, every almost periodic Jacobi matrix of J(E) can be represented in this form with some $\alpha \in \Gamma^*$.

Remark 2.3. It seems very interesting to give an independent proof of this theorem.

3. The result

First, we need some information on properties of \mathbb{D}/Γ' and reproducing kernels on it.

For a given character $\alpha \in \Gamma^*$, as usual let us define

$$H^{\infty}(\Gamma, \alpha) = \{ f \in H^{\infty} : f(\gamma(\zeta)) = \alpha(\gamma)f(\zeta), \ \forall \gamma \in \Gamma \}.$$

Generally, a group Γ is said to be of *Widom type* if for any $\alpha \in \Gamma^*$ the space $H^{\infty}(\Gamma, \alpha)$ is not trivial (contains a non-constant function).

The Direct Cauchy theorem [3] holds on \mathbb{D}/Γ if

$$\int_{\mathbb{E}} \frac{f}{b}(\zeta) \frac{d\zeta}{2\pi i} = \frac{f}{b'}(0), \quad \forall f \in A_2^1(\Gamma, \mu).$$
 (12)

Lemma 3.1. Let Γ be a Fuchsian group of Widom type with (DCT). Then (DCT) holds on \mathbb{D}/Γ' .

Proof. Let $b(\zeta) = b(\zeta, \Gamma)$ and $b_0(\zeta) = b(\zeta, \Gamma')$ be the Green's functions (with respect to the origin) of the groups Γ and Γ' respectively. Let us show that for any automorphic function $f \circ \gamma = f$, $\gamma \in \Gamma'$, integrable on \mathbb{T} , $f \in L^1$, we have the identity:

$$\int_{\mathbb{T}} f \, dm = \int_{\mathbb{T}} \left\{ \sum_{\{\gamma\} \in \Gamma/\Gamma'} \left(f \frac{|b_0'|}{|b'|} \right) \circ \gamma \right\} \, dm. \tag{13}$$

Recall that for a group of Widom type $b'(\zeta)$ is a function of bounded characteristic and that $\sum_{\gamma \in \Gamma} |\gamma'(\zeta)| = |b'(\zeta)|$ for a.e. ζ on \mathbb{T} . Then

$$\int\limits_{\mathbb{T}} f\,dm = \sum_{\gamma_0 \in \Gamma'} \int\limits_{\gamma_0(\mathbb{E}_0)} f\,dm = \int\limits_{\mathbb{E}_0} \sum_{\gamma_0 \in \Gamma'} f(\gamma_0(\zeta)) |\gamma_0'(\zeta)| \,dm(\zeta) = \int\limits_{\mathbb{E}_0} f|b_0'|\,dm,$$

where \mathbb{E}_0 is a fundamental set for Γ' . Let $\tilde{\Gamma}$ be a system of representatives of the classes Γ/Γ' . Let us choose $\mathbb{E}_0 = \bigcup_{\tilde{\gamma} \in \tilde{\Gamma}} \tilde{\gamma}(\mathbb{E})$, in this case

$$\int_{\mathbb{E}_0} f|b_0'| \, dm = \int_{\mathbb{E}} \sum_{\tilde{\gamma} \in \tilde{\Gamma}} (f|b_0'|) (\tilde{\gamma}(\zeta)) |\tilde{\gamma}'(\zeta)| \, dm(\zeta).$$

As $|b'(\tilde{\gamma}(\zeta))| |\tilde{\gamma}'(\zeta)| = |b'(\zeta)|$, we have

$$\int\limits_{\mathbb{T}} f \, dm = \int\limits_{\mathbb{E}} \left\{ \sum_{ ilde{\gamma} \in ilde{\Gamma}} \left(rac{f |b_0'|}{|b'|}
ight) (ilde{\gamma}(\zeta))
ight\} |b'(\zeta)| \, dm(\zeta).$$

Since the function $\left(\frac{f|b_0'|}{|b'|}\right)$ is Γ' -automorphic the sum in curly braces does not depend on a choice of representatives $\tilde{\Gamma}$ and, therefore, it is a Γ -automorphic function. Thus the integral of this function on a fundamental set with weight |b'| and its integral on \mathbb{T} with respect to dm are the same. (13) is proved.

Let us put

$$b'(\zeta, \Gamma) = \Delta(\zeta, \Gamma)\phi(\zeta, \Gamma),$$

where $\Delta(\zeta, \Gamma)$ is an inner factor $\phi(\zeta, \Gamma)$ is an outer factor of $b'(\zeta, \Gamma)$. Note that $\Delta(\zeta, \Gamma)$ is a character-automorphic function and denote by α_{Δ} its character. Let $H^1(\Gamma, \alpha)$ be a set of α -automorphic functions from H^1 . In this terms (DCT) holds iff

$$\int\limits_{\mathbb{T}}\frac{h}{\Delta}\,dm=\frac{h}{\Delta}(0),\ \forall\ h\in H^1(\Gamma,\Delta).$$

Thus we are going to prove the same property for the group Γ' .

Let $f = h/\Delta_0$, where $\Delta_0(\zeta) = \Delta(\zeta, \Gamma_0)$ and $h \in H^1(\Gamma_0, \alpha_{\Delta_0})$. Since

$$|b'(\zeta,\Gamma)| = \frac{\zeta b'(\zeta,\Gamma)}{b(\zeta,\Gamma)}, \ \zeta \in \mathbb{T},$$

we have by (13)

$$\begin{split} \int\limits_{\mathbb{T}} \frac{h}{\Delta_0} dm &= \int\limits_{\mathbb{T}} \left\{ \sum_{\{\gamma\} \in \Gamma/\Gamma'} \left(\frac{h}{\Delta_0} \frac{b_0'}{b_0} \frac{b'}{b} \right) (\gamma(\zeta)) \right\} dm \\ &= \int\limits_{\mathbb{T}} \frac{\sum_{\{\gamma\} \in \Gamma/\Gamma'} \left(h \frac{\phi_0}{\phi} \frac{b}{b_0} \right) (\gamma(\zeta)) \alpha_\Delta^{-1}(\gamma)}{\Delta} dm. \end{split}$$

We claim that $\sum_{\{\gamma\}\in\Gamma/\Gamma'}\left(h\frac{\phi_0}{\phi}\frac{b}{b_0}\right)(\gamma(\zeta))\alpha_\Delta^{-1}(\gamma)\in H^1(\Gamma,\alpha_\Delta)$. The automorphic property is evident. Putting f=|h| in (13), we get that the series converges absolutely $\left(\sum_{\{\gamma\}\in\Gamma/\Gamma'}\left(|h|\frac{|\psi_0|}{|\psi|}\right)(\gamma(\zeta))\in L^1\right)$ and each term is of H^1 .

Due to (DCT) in \mathbb{D}/Γ we have

$$\int_{\mathbb{T}} \frac{h}{\Delta_0} dm = \frac{1}{\Delta_0(0)} \left(h \frac{\phi_0}{\phi} \frac{b}{b_0} \right) (0) = \frac{h(0)}{\Delta(0)} \frac{\phi_0(0)}{\phi(0)} \frac{b'(0)}{b'_0(0)} = \frac{h(0)}{\Delta_0(0)}.$$

Lemma 3.2. Let $k^{\alpha}(\zeta, \zeta_0) = k^{\alpha}(\zeta, \zeta_0; \Gamma)$ be the reproducing kernel of $A_1^2(\Gamma, \alpha)$ and $w(\zeta)$ be an automorphic function with a positive real part. Then the kernel

$$(w(\zeta_1) + \overline{w(\zeta_2)})k^{\alpha}(\zeta_1, \zeta_2) \tag{14}$$

is positive definite.

P r o o f. It is well known that for a contractive automorphic function $u(\zeta), |u(\zeta)| \leq 1$, the kernel $(1 - u(\zeta_1)\overline{u(z_2)})k^{\alpha}(\zeta_1, \zeta_2)$ is positive (see e.g. [4]). Making linear–fractional transformation $w(\zeta) \mapsto u(\zeta) = \frac{w(\zeta) - w(0)}{w(\zeta) + w(0)}$, we get (14).

Lemma 3.3. Assume that the real part of an automorphic function $v(\zeta)$ is bounded, $C_1 \leq Re \ v(\zeta) \leq C_2$. Then $vk_{\zeta_0}^{\alpha} \in A_1^2(\Gamma, \alpha)$.

Proof. According to the previous lemma we have the inequalities for kernels

$$C_1 k^{\alpha}(\zeta_1, \zeta_2) \le \frac{v(\zeta_1) + \overline{v(\zeta_2)}}{2} k^{\alpha}(\zeta_1, \zeta_2) \le C_2 k^{\alpha}(\zeta_1, \zeta_2).$$

This implies that the operator V^* is well define by $V^*k^{\alpha}_{\zeta_0} = \overline{v(\zeta_0)}k^{\alpha}_{\zeta_0}$ on a dense in $A^2_1(\Gamma,\alpha)$ set consisting of finite linear combinations of reproducing kernels

$$\mathcal{D}_{V^*} = \{ x = \sum c_j k_{\zeta_j}^{\alpha} \}.$$

Moreover, the quadratic form $\frac{1}{2}\{\langle V^*x, x\rangle + \langle x, V^*x\rangle\}$, $x \in \mathcal{D}_{V^*}$, is bounded and hence it is the quadratic form of a bounded self adjoint operator, say A. Thus, in particular, we have

$$v(\zeta)k^{\alpha}_{\zeta_0}(\zeta) + \overline{v(\zeta_0)}k^{\alpha}_{\zeta_0}(\zeta) = 2(Ak^{\alpha}_{\zeta_0})(\zeta).$$

The lemma is proved.

Remark 3.4. Lemma 3.3 shows that the reproducing kernels possess some "additional smoothness". It is highly interesting to clarify an exact meaning of this words.

Lemma 3.5. Let $k_{\zeta_0;\Gamma}^{\alpha}(\zeta) = k^{\alpha}(\zeta,\zeta_0;\Gamma)$ be the reproducing kernel of $A_1^2(\Gamma,\alpha)$. Then

$$k_{\zeta_0;\Gamma'} = \int_{\Gamma^*} k_{\zeta_0;\Gamma}^{\alpha} d\chi(\alpha), \tag{15}$$

and

$$k_{\zeta_0;\Gamma}^{\alpha} = \sum_{\{\gamma\} \in \Gamma/\Gamma'} k_{\zeta_0;\Gamma'} |[\gamma] \alpha^{-1}(\gamma).$$
(16)

Proof. We use decomposition (9) and (10). For any $\zeta_0 \in \mathbb{D}$ and $f \in A_1^2(\Gamma')$

$$f(\zeta_0) = \langle f(\zeta), k_{\zeta_0;\Gamma'}(\zeta) \rangle = \int_{\Gamma^*} \langle F(\zeta, \alpha), \sum_{\{\gamma\} \in \Gamma/\Gamma'} (k_{\zeta_0;\Gamma'}|[\gamma])(\zeta)\alpha^{-1}(\gamma) \rangle d\chi(\alpha).$$

On the other hand by (11),

$$f(\zeta_0) = \int_{\Gamma^*} F(\zeta_0, \alpha) \, d\chi(\alpha) = \int_{\Gamma^*} \langle F(\zeta, \alpha), k^{\alpha}(\zeta, \zeta_0) \rangle \, d\chi(\alpha).$$

Thus, we get (16). Then (11) implies (15).

Now we are in position to prove the Main Theorem

Proof. We consider a symbol a as a real-valued symmetric function on \mathbb{T} , $a(\zeta)=a(\bar{\zeta})$ possessing the automorphic property $a(\gamma(\zeta))=a(\zeta)$. For any α it defines a bounded self-adjoint operator $M_a(\alpha)$ as the multiplication operator in $L^2(\Gamma,\alpha)$ with respect to the basis $\{e_n(\alpha,\zeta)\}_{n\in\mathbb{Z}}$, $e_n(\alpha,\zeta)=b^n(\zeta)K^{\alpha\mu^{-n}}(\zeta)$.

Under isomorphism

$$L^{2}(\Gamma') \simeq \int_{\Gamma^{*}} L^{2}(\Gamma, \alpha) \, d\chi(\alpha) \simeq L^{2}_{d\chi}(l^{2}(\mathbb{Z})), \tag{17}$$

the operator multiplication by a defines an operator $A: L^2_{d\chi}(l^2(\mathbb{Z})) \to L^2_{d\chi}(l^2(\mathbb{Z}))$ of the form

$$(Ax)(\alpha) = M_a(\alpha)x(\alpha), \quad x \in L^2_{d\chi}(l^2(\mathbb{Z})).$$

Define

$$(a+\tilde{a})(\zeta)=v(\zeta):=\int_{\mathbb{T}}rac{t+\zeta}{t-\zeta}a(t)\,dm(t),$$

where $a(\zeta)$ and $\tilde{a}(\zeta)$ are respectively real and imaginary parts of $v(\zeta)$, $\zeta \in \mathbb{D}$. Thus \tilde{a} is the harmonically conjugated function to a. The boundary values of $\tilde{a}(\zeta)$ define an imaginary-valued function on \mathbb{T} , generally, it does not belong to L^{∞} , but, for sure, $\tilde{a} \in L^2$. Also, this function has the following property:

$$\tilde{a}(\gamma(\zeta)) = \tilde{a}(\zeta) + \xi(\gamma),$$

where $\xi:\Gamma\to i\mathbb{R}$ is an additive function on Γ . Thus \tilde{a} and v are automorphic with respect to Γ' .

Using Lemma 3.3 we define an (unbounded) operator multiplication by v in $L^2(\Gamma')$. Note that $k_{\zeta_0;\Gamma'} \in \mathcal{D}_v$, moreover

$$v(\zeta)k_{\zeta_0;\Gamma'}(\zeta) = -\overline{v(\zeta_0)}k_{\zeta_0;\Gamma'}(\zeta) + 2P_+(ak_{\zeta_0;\Gamma'})(\zeta). \tag{18}$$

Using Lemma 3.5 we obtain from (18)

$$\sum_{\{\gamma\}\in\Gamma/\Gamma'} (v(\zeta) + \xi(\gamma)) k_{\zeta_0;\Gamma'} |[\gamma](\zeta)\alpha^{-1}(\gamma) =$$

$$v(\zeta) k_{\zeta_0;\Gamma}^{\alpha}(\zeta) + \sum_{\{\gamma\}\in\Gamma/\Gamma'} \xi(\gamma) k_{\zeta_0;\Gamma'} |[\gamma](\zeta)\alpha^{-1}(\gamma) = -\overline{v(\zeta_0)} k_{\zeta_0;\Gamma}^{\alpha}(\zeta) + 2\langle a k_{\zeta_0;\Gamma}^{\alpha}, k_{\zeta;\Gamma}^{\alpha} \rangle.$$
(19)

Note that the sum in the last line of (19) is the formal derivative of the series (16) in the direction $-\xi$ that is

$$\partial_{-\xi} f(\alpha) := \frac{\mathrm{d}}{\mathrm{d}t} f(e^{-t\xi}\alpha) \Big|_{t=0}.$$

Since all other terms in this line are continuous functions on Γ^* (for fixed ζ and ζ_0 in \mathbb{D}), the series represent a continuous function. Therefore $k_{\zeta_0;\Gamma}^{\alpha}$ is differentiable in the direction ξ and we can rewrite (19) into the form

$$(v(\zeta) - \partial_{\xi})k^{\alpha}_{\zeta_{0};\Gamma}(\zeta) = -\overline{v(\zeta_{0})}k^{\alpha}_{\zeta_{0};\Gamma}(\zeta) + 2\langle ak^{\alpha}_{\zeta_{0};\Gamma}, k^{\alpha}_{\zeta;\Gamma}\rangle. \tag{20}$$

Let $\{a_{n,m}(\alpha)\}$ be matrix entries of the operator $M_a(\alpha)$ with respect to the basis $\{e_n(\alpha)\}$. We put $\zeta = \zeta_0 = 0$ in (20). Then we get

$$(a(0) - \partial_{\xi})e_0^2(\alpha, 0) = -a(0)e_0^2(\alpha, 0) + 2a_{0,0}(\alpha)e_0^2(\alpha, 0)$$

or

$$(a(0) - \partial_{\xi})e_0(\alpha, 0) = a_{0,0}(\alpha)e_0(\alpha, 0). \tag{21}$$

Putting $\zeta = 0$ in (20) we get

$$(a(0) - \partial_{\xi})\overline{e_0(\alpha, \zeta_0)}e_0(\alpha, 0) = -\overline{v(\zeta_0)e_0(\alpha, \zeta_0)}e_0(\alpha, 0) +2\sum_{n=0}^{\infty} a_{0,n}(\alpha)\overline{e_n(\alpha, \zeta_0)}e_0(\alpha, 0).$$

or making use (21) we obtain

$$-\partial_{\xi}\overline{e_0(\alpha,\zeta_0)} = (a_{0,0}(\alpha) - \overline{v(\zeta_0)})\overline{e_0(\alpha,\zeta_0)} + 2\sum_{n=1}^{\infty} a_{0,n}(\alpha)\overline{e_n(\alpha,\zeta_0)}.$$
 (22)

Note that since $e_m(\alpha, \zeta_0) = b^m(\zeta_0)e_0(\alpha\mu^{-m}, \zeta_0)$ simultaneously with (22) we proved

$$-\partial_{\xi}\overline{e_{m}(\alpha,\zeta_{0})} = (a_{m,m}(\alpha) - \overline{v(\zeta_{0})})\overline{e_{m}(\alpha,\zeta_{0})} + 2\sum_{n=m+1}^{\infty} a_{m,n}(\alpha)\overline{e_{n}(\alpha,\zeta_{0})}.$$
(23)

Now we may claim that operator multiplication by v under isomorphism (17) becomes the operator

$$V = -\partial_{\xi} + \{M(\alpha) - \widetilde{M}(\alpha)\}. \tag{24}$$

Indeed, according to (18) for $m \geq 0$ we have

$$(V\hat{k}_{\zeta_0})_m = -\overline{v(\zeta_0)e_m(\alpha,\zeta_0)} + 2\sum_{n=0}^{\infty} a_{m,n}(\alpha)\overline{e_n(\alpha,\zeta_0)}, \tag{25}$$

where as in Section 2

$$\hat{k}_{\zeta_0} \in L^2_{d\chi}(l^2(\mathbb{Z}_+)), \quad (\hat{k}_{\zeta_0})_m = \overline{e_m(\alpha, \zeta_0)}.$$

Substituting $\overline{v(\zeta_0)}\hat{k}_{\zeta_0}$ from (23) into (25) we get (24) on the vector \hat{k}_{ζ_0} .

Finally, the operators \hat{J} and V commute and this commutant relation yields

$$\partial_{-\xi}J(\alpha) = [\widetilde{M}_a(\alpha), J(\alpha)].$$

Remark 3.6. Note that stationary solutions of the hierarchy corresponds to those "directions" a for which the associated character $\xi = 0$. In the other words \tilde{a} should be a Γ -automorphic function.

Acknowledgement. Peter Yuditskii wishes to thank the participants of the seminar of L. Miroyan for useful discussion.

References

- [1] H.L. Cycon, R.G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry. Springer-Verlag, Berlin (1987).
- [2] B.A. Dubrovin, I.M. Krichever, and S.P. Novikov, Dynamical systems. IV. Springer-Verlag, Berlin (1990).
- [3] M. Hasumi, Hardy classes on infinitely connected Riemann surfaces. Lect. Notes Math., Springer-Verlag, Berlin, New York (1983), v. 1027.
- [4] S. Kupin and P. Yuditskii, Analogs of Nehari and Sarason theorems in the classes of character-automorphic functions and some related questions. Topics in interpolation theory. Oper. Theory Adv. Appl., Birkhäuser, Basel (1997), v. 95, p. 374–390.
- [5] L. Pastur and A. Figotin, Spectra of random and almost-periodic operators. Springer-Verlag, Berlin (1986).
- [6] M. Sodin and P. Yuditskii, Almost periodic Jacobi matrices with homogeneous spectrum, infinite dimensional Jacobi inversion, and Hardy spaces of character–automorphic functions. J. Geom. Anal. (1997), v. 7, p. 387–435.
- [7] G. Teschel, Jacobi operators and completely integrable nonlinear lattices. Math. Surveys and Monographs. AMS, Providence, RI (2000), v. 72.
- [8] P. Yuditskii, Two remarks on Fuchsian groups of Widom type. Operator theory, system theory and related topics. Oper. Theory Adv. Appl., Birkhäuser, Basel (2001), v. 123, p. 527–537.