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In this paper necessary and sufficient conditions of null-controllability
and approximate null-controllability are obtained for the wave equation on
a half-axis. Controls solving these problems are found explicitly. Moreover
bang-bang controls solving the approximate null-controllability problem are
constructed with the aid of solutions of the Markov trigonometric moment
problem.

0. Introduction

One of the most general-accepted ways for studying control systems with
distributed parameters is to write them in the form

‘2—? = Aw+Bu, te(0,7), (0.1)
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where T > 0, w : (0,7) — H is an unknown function, u : (0,7) — H is a
control, H, H are Banach spaces, A is an infinitesimal operatorin 4, B : H — H
is a linear bounded operator (see, e.g., [1]-[6]). An important advantage of this
approach is a possibility to employ ideas and technique of the semigroup operator
theory. At the same time it should be noticed that the most substantial and
important for applications results on operator semigroups deal with the case when
the semigroup generator A has a discrete spectrum or a compact resolvent and
therefore the semigroup may be treated by means of eigenelements of A. These
assumptions correspond to differential equations in bounded domains only.
In this work we consider the wave equation on a half-axis

0*w(z,t) B 0?w(z,t)

= te (0, T 0.2
6t2 axQ 0’ T > 0’ ( ? )7 ( )

controlled by the boundary condition
w(0,t) =u(t), te(0,T), (0.3)

where T' > 0. We also assume that the control u satisfies the restriction
u € B(0,T) = {v e L*(0,T) | |v(t)| <1 almost everywhere on (0,7)}. (0.4)

All functions appearing in equation (0.2) are defined for z > 0. Further, we
assume everywhere that a function with domain D C R are defined for z € R and
vanish for z € R\D.

Let us give definitions of the spaces used in our work. Let § be the Schwartz
space [9]

S={peC®R")|VYmeNVleN
sup {|D* p(z)| (1 + |z?)' | 2 € R* A || < m} < +o0},
and let 8’ be the dual space, here D = (—i0/0xz1, ... ,—i0/0z,), a = (a1, ... ay)
is a multi-index, |a| = a1 + -+ + ap.

A distribution f € §' is said to be odd if (f,p(z)) = —(f,¢(—x)), ¢ € 8,
and even if (f,¢(z)) = (f,¢o(—2x)), ¢ € 8. Let Q : § — & with D(Q)
{g € 8 | suppg C [0,+00)} be the odd extension operator: (Qg,¢(z)) = (g, o(x
—(g,0(—x2)), p € 8, and © : § — 8’ with D(O) = {g € 8’ | suppg C [0, +00
be the even extension operator: (g, ¢(z)) = (g, ¢(x)) + (g, 9(—x)), ¢ € 8.

It is easy to see that

©@f)' =oef, (©f)=qaf, feD®)=D@®). (0.5)
Denote by H} (I € R, s € R) the following Sobolev spaces:

s/2

1y = {pes | (1+]2)" (L+1DP) p e 12 @),
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“+oo 1/2
s 2
ol = { [ |+1aP)" (14 D) pt)| da

Using [10, Ch. 1] one can see that if ¢ € H} then ¢ € Hf*1 and

&', < llell; (0.6)

Further we assume throughout the paper that s <0, ! <0 and use the spaces
Hi(w) = {p € Hf x H}™" | suppyp C [0,]}, H;(+o00) = K}, Hf = {p € H}

_ ) . 2 C1n2\ /2
xH} ™| ¢ is odd} with the norm |||} = ((||<p0||l5) + (lla]l51) ) . Denote
by A and B the following operators

0 1 ~ ~ ~
A:(dQ/de o)’ A:H7? — H}?  D(A)=H;}, (0.7)
0 ~
B = ( —28/(x) ) B:R— H/™?, D(B)=R, (0.8)

where § is the Dirac function.

The semigroup generated by A can be explicitly represented by the trans-
lation operator and the differentiation operator. In Section 1 it makes possible
to obtain necessary and sufficient conditions for null-controllability and approx-
imate null-controllability for system (0.2), (0.3) with restrictions on the control
(0.4). Controls solving the problems of null-controllability and approximate null-
controllability are found explicitly. But these controls may be of a rather com-
plicated form.

The main goal of Section 2 is to find bang-bang controls solving the approxi-
mate null-controllability problem (a control u € B(0,T) is called a bang-bang one
if it has a finite number of discontinuity points and |u(t)| = 1 almost everywhere
on (0,7")). We show that this problem can be reduced to the Markov trigonomet-
ric moment problem. We can construct solutions of the Markov trigonometric
moment min-problems for finite sequences by the method given in [7]. These
solutions give us bang-bang controls solving the approximate null-controllability
problem.

1. Null-controllability problems

Consider control system (0.2), (0.3) with the initial conditions

w(r,0) = wd(z)
{memvm _ b z>0, (1.1)
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and the steering conditions

{ wiz, T) = w?f(x) z >0, (1.2)

ow(z,T)/ot = wi(z) ’
0 T
where w® = ( gg ) € Hi, wl = ( :OT ) € H;. We consider solutions of
1 1

problem (0.2), (0.3) in the space J{}.

Let T > 0, w® € H;. Denote by Ry(w®) the reachability set, i.e. the set
of states w! € H¢ for which there exists a control u € B(0,T) such that prob-
lem (0.2), (0.3), (1.1), (1.2) has a unique solution. Obviously, if 77 < T then
R (w) € Ry (w?).

Definition 1.1. A state w° € Hj is called null-controllable at a given time
T if 0 belongs to Ry(w®) and approzimately null-controllable at this time if 0
belongs to the closure of Ry(w®) in 3.

Problem (0.2), (0.3), (1.1) is equivalent to the Cauchy problem for system
(0.1) with the initial condition

w(-,0) = w° (1.3)
where w0 € H?, A and B defined by (0.7) and (0.8) respectively.
Let Ty be the translation operator: (7, f)(z) = f(z + h) for a function f with
domain R and (Tnf, @) = (f, T-rp), @ € 8, for a distribution f € §’. Then

_ 7l S S l S ’
27072 (1 hf2) 2 g < T < 2007 (e ) VRN f e By
(1.4)

Denote

1 Te+ T+ (d/dz)~" (T — T—4)
5() =3 ( (d/d) (Ti — T-1) T+ T ) (15)

where (d/dz)™" (T, — T-y) f = F71 [(1/io) (6" —e™"!) Ff], F: 8 —> §' is the
Fourier transform operator. Obviously S(t) is the Cy-semigroup generated by A
and

w( ) = S(H)w® + / S(t—7)Bu(r)dr,  teo,T], (1.6)
0

is a unique solution of (0.1), (1.3) in H}.

236 Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 2



Trigonometric moment problem in controllability problems

Taking into account (1.4) it is easy to see that
|72 @rde) (T - Ty <20VPTOL T2 g, g e By
Therefore
IS(D)gll; <2702+ T*)D2 gl7, g€ Hf. (1.7)

Denote Ry (w?) = {S(T)(w0 + fOT S(—=7)Bu(r)dr) |u € B(O,T)} for w0 €
ﬁf Then from (1.6) we get

Corollary 1.1. A state w° € K} is null-controllable at a given time T > 0 iff
0 belongs to Rr(w°) and approzimately null-controllable at this time iff 0 belongs
to the closure of Rr(w®) in H} where w® = Qu°.

Theorem 1.1. A state w° € Hj is approzimately null-controllable at a given
time T > 0 iff the following three conditions hold:

w?d = w’ n Hlsfl, (1.8)

wy € L?[0, +o0) and |w8(w)‘ <1 almost everywhere on (0,+00).
(1.9)
suppwg C [0,77. (1.10)

Moreover, if conditions (1.8)-(1.10) are valid then the state w® is null-controllable
at the time T'. Under these conditions Ty = max supp w8 is the optimal time and
u(t) = wi(t) (t € [0,Ty]) is the time-optimal control for null-controllability.

Proof Sufficiency of (1.8)-(1.10). Let w° € Hj, T > 0 and (1.8), (1.9)
be satisfied. For all u € B(0,7") we have

O/T S(—7)Bu(r)dr = 5 O/T ( (e(e;UJr_eiU) ZU )u(T) dr| = ( o )
(1.11)

Put u(t) = w)(t) (¢ € [0,T]) and suppose that w(-,t) € Hf (¢ € [0,T7]) is a solution
of problem (0.2), (0.3), (1.1), (1.2). Then w(-,t) = ( Bwu(}-(,.’t)t}Bt ) (t €[0,77)
is a solution of (0.1), (1.3). It follows from (0.5), (1.6), (1.8), (1.10), (1.11) that
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B (Qwf — u)) (z)
w(z,T) = S(T) ( (©(uwf — u))' (z)
state w® is null-controllable at the time 7. Thus sufficiency of (1.8)-(1.10) is
shown.

Necessity of (1.8)-(1.10). Let w® € H; be approximately null-controllable
at a time T' > 0. Then by Corollary 1.1 we have that the origin belongs to the
closure of R(w?) in Hf where w® = Qu’. Hence for each n € N there exists a
state w" € R(w°) such that

) = (0. By Corollary 1.1 it means that the

1
"I° < = 1.12
Iw"l" < -, (1.12)
Then with regard to (1.6), (1.11) for some u, € B(0,7") we have
w) — Qu
w" = S(T) ( W§ _ Quz . (1.13)
0 0

Taking into account (1.7) and (0.5) we obtain w], — wj and u, — wy as
n — oo in Hi~'. Therefore (1.8) and (1.10) hold.

Thus u,, weakly converges to w) as n — oo in 8’ and (LQ(R))’ (because 8
is dense in L?(R)). By the Riesz theorem we conclude that w) € L?(R). Then
since u, € B(0,T) we get (1.9). The proof is complete.

Remark 1.1. Let w® € K, w’ = Qu°, T > 0, u € B(0,T) and let (1.8)-
Q (wl — .
(1.10) be satisfied. Thenw(-,T) = S(T) ( (g —u) ) in H} wherew(-,1) €

(© (w§ —u))

I;Tf (t € [0,T]) is the solution of problem (0.1), (1.3).

2. The Markov trigonometric moment problem
in controllability problems

The the approximate null-controllability problem solution found in Section 1
for (0.2), (0.3), (1.1) may be too complicated for practical purposes. In this
section we find a bang-bang control solving this problem. To do this we consider
the approximate null-controllability problem for the wave equation on [0, u] and
construct its bang-bang solution by an application of the method for solving the
Markov trigonometric moment min-problem [7]. Then we show (Corollary 2.1)
that the obtained solution is also a solution of the approximate null-controllability
problem for (0.2), (0.3), (1.1).

Consider the following control problem for the wave equation on [0, u:

0%*v(z,t) B 0%v(z,t)

012 912 =0, T € (Oa:u’)a te (OaT)’ (21)
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v(0,t) = u(t), wv(p,t)=0, te€ (0,7, (2.2)

v\T = ’UO T
{ a’l)(x,(())’g?f = ?’E:L-g ? z € (O’H)a (23)

0
where T > 0, u € B(0,T), v° = ( ZS ) € H§(p). One can see that this problem

can be represented in the form

Z—‘t’ —Av+Bu, te(0,T), (2.4)

v(-,0) = v° (2.5)

= 0 . r7s—2

where A defined by (0.7), B = ZkeZ( 20" ( + 2kp) ), B:R — H %
v(-, 1t ~ ~

D(B) = Ra v = EkeZ’TQkuQ( (9’0(( t)}@t ) € Hls, V0 = ZkEZEkMQUO € Hls,

I < —1/2 (obviously, v(-,t), t € (0,T), and v° are odd and periodic). Defini-
tions of the reachability sets R (v°), RT(v®) null-controllability and approxi-
mate null-controllability for problems (2.1)—(2.3) and (2.4), (2.5) are analogous
to the definitions of this concepts for problems (0.2), (0.3), (1.1) and (0.1), (1.3)
respectively.

Using the same reasonings as in the proof of Theorem 1.1 we obtain

Theorem 2.1. A state v° € H§(u) is approzimately null-controllable at a
giwen time T > 0 iff the following three conditions hold:

0¥ = o in HS 1, (2.6)
vy € L*(0, 1) and ‘v8(w)| <1 almost everywhere on (0,p), (2.7)

suppvg C [0, 7). (2.8)

Moreover, if conditions (2.6)—(2.8) are valid then the state v° is null-controllable
at the time T. Under these conditions Ty = max supp v8 is the optimal time and
u(t) = v§(t) (t € [0,T.]) is the time-optimal control for null-controllability.

Remark 2.1. Let | < —1/2, v9 € H§(u), T > 0 and let (2.6)—(2.8) be sat-
isfied. Let v = Y, oy Toku00°, u € B(0,T), suppu C [0,p]. Then v(-,T) =

) —u ~ ~
S(T) ZkeZTZku< ((g((vé)—u)))' ) in H} where v(-,t) € H} (t € [0,T]) is the

solution of problem (2.4), (2.5).
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If i <—1/2, f € H}, supp f C [0, u], k € Z then

okt 15 < (1 + 2kp)2)"” I £115- (2.9)

Taking into account (1.7), (0.6), (2.9) and Remarks 1.1, 2.1 it is easy to prove

Theorem 2.2. Assume that | < —1/2, a state w® € K} satisfies conditions
(1.8), (1.9), maxsuppw) < T < p and

wp =2, w=0u’, V=D Top’  weB(0,T) (2.10)
kEeZ

Then for the solutions w and v of problems (0.1), (1.3) and (2.4), (2.5) we have

(-, T) = v(, T))F < 26°0/2(1 4 72002 3™ (14 2kp0)%) 7 [0 — | -

keZ\{0}
(2.11)
Let v° € 3§(u), u € B(0,T), 0 < T < p. Denoting
)% T
2 0 . [(7mm 2
_ 2 .= = dt =0
W M/’UO(IE)SIII(M.T) T/u sm( ) , m , 00,
0 0
(2.12)

for s < —1/2 we obtain

() ( Z Wi Sin (—x) () (1) = goym sin (%t) (2.13)

and 1;8 = in H§ iff wy, = vy, m =0, 0.
The problem of determination of a function u € B(0,7T) satisfying the condi-

tions
T

2
/u sm( >dt T Wm; m = 0, 00,

0

for given {wp, }pr_o and T' > 0 is called the Markov trigonometric moment problem
on (0,T) for the infinite sequence {wm},._o [8]. Such a function u is called a
solution of this problem.

Thus under the conditions of Theorem 2.1 the null-controllability problem for
(2.1)—(2.3) is equivalent to the Markov trigonometric moment problem (0,7) for
the infinite sequence {wm },-_, defined by (2.12).
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Let N € N. Consider the problem of determination of a function u € B(0,T")
satisfying the conditions

T

2
/u(t) sin (%t) dt = W m=0,N, (2.14)
0

for given {wm}%zo and T > 0. This problem is called [8] the Markov trigonometric

moment problem on (0,T) for the finite sequence {wm}ﬁzo and such a function
u is called a solution of this problem.

Theorem 2.3. Let s < —1/2. For all € > 0 there exists N € N such that
if v0 € HE(u) satisfies conditions (2.6), (2.7), maxsuppv) < T < u and the
sequence {wm}gzo defined by (2.12) then for each solution u € B(0,T) of moment
problem (2.14) the corresponding solution v(-,t) € H5(p) (t € [0,T]) of problem

S

o . v(-, T s
(2.1)—-(2.8) satisfies the condition ( (91)(-(, T)}at ) <2 va - u”O < e.

0
Proof. With regard to Remark 2.1 we obtain

lo(, )l < |08 —ullg, — l18v(, T) /0t~ < ||og — ull;-

Let the sequences {wp, }5°_, and {vp, }2°_, defined by (2.12). It follows from (2.7)
that |wp| < 2, |vm| < 2 (m = 0,00). Taking into account (2.13), (2.14) we
conclude that

H‘( 8,01(]'(’ ,T])ﬂiat > 0 = V2 ”U(O) B u”; B m_z]\;ﬂ(wm — V) Singy, <?x) 0
s 2\ 5/2
< 4/u Z (14—(@)) —0as N — o0
m=N+1 K

where sin,,(z) = sinz if £ € [—7m, 7m] and sin,,(z) = 0 otherwise. The proof is
completed.
From Theorems 2.2, 2.3 we get

Corollary 2.1. Let s < —1/2, | < —1/2, w® € H;(u) satisfy conditions
(1.8), (1.9), maxsuppw) < T < p. Let also the sequence {wm}%zo defined
by (2.12) with v] = w]. Then for all € > 0 there exists N € N such that for
each solution u € B(0,T) of moment problem (2.14) the corresponding solution
w(-t) € ] (t € [0,T]) of problem (0.2), (0.8), (1.1) satisfies the condition

|Cantyae )|

<E.
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By the method obtained in [7] under conditions of this corollary for all N € N

we can find a control uy € B(0,7T) satisfying the following three conditions:
(i) (2.14) is valid, (ii) |un(t)] = 1 almost everywhere on (0,7), (iii) ux has no
more than 2N points of discontinuity on (0,7"). With regard to Corollary 2.1
we conclude that these functions uy (N € N) are bang-bang controls solving
approximate null-controllability problem for (0.2), (0.3), (1.1).
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