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The Korteweg—de Vries equation is considered on a half-line with zero
boundary conditions at the origin and with arbitrary smooth initial values
vanishing rapidly enough. The problem is effectively integrated by means

of the inverse scattering method when the associated linear problem has no
discrete spectrum. In this case the global solvability theorem is proved.

The paper is devoted to initial boundary value problems consistent with the
inverse scattering method. We begin with a simple example (Ablowitz, Segur
[1]). The following IBV problem for the nonlinear Schrédinger equation:

iy = Ugg + |ul?u, x>0,

'Uf|z:0 =0,

u(0,z) = uo(z) (1)
is easily reduced to the Cauchy problem on the whole line —oc0 < z < 0o by the

formula
u(z,t) = —u(—z,t).

That is why the problem is evidently consistent with the inverse scattering trans-
form method. IBV problems with boundary conditions of more general form are
discussed in [2, 3]. The next example is much more complicated (Sklyanin [4, 5])

iy = Ugg + |ul?u, x>0,

Uy — Cu|$:0 =0,

u(0,z) = uo(x). (2)
Here the solution is prolonged by use of the Backlund transform wu(z,t) =
T(u(—z,t)).
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But there is a class of integrable IBV problems which are not connected with
the continuation procedure. For instance, the following IBV problem for the KdV
equation cannot be reduced to the Cauchy problem:

Ut = Upgy — Ougu, z>0,1>0, (3)
u‘x:O = a, uww'w:O = b, (4)
uli=0 = uo(x), uo(%)|z—+00 — 0, (5)

where a and b are constants, because the KdV equation does not admit any
reflection type symmetry (z — —z, t — t, u — h(u)). It was shown (Adler,
Giirel, Giirses, Habibullin [6]) that the problem passes the integrability test based
on higher symmetries. Soliton-like solutions of the KAV equation satisfying the
boundary conditions (4) are studied in [7]. Below we discuss some analytical
properties of this IBV problem in the particular case when the parameters a and
b vanish

Up = Ugpy — Ouzu, x>0,t>0, (6)
u‘x:O =0, uww|w:0 =0, (7)
uli=0 = uo(z), uo(%)|z—+00 — 0. (8)

The problem admits infinitely many integrals of motion, first three of them are

o0 o
Jp = /ud:v, Jy = /(uﬁ + 2u3)dz,
0 0
J3 = /(u?mc — 5ulugy + Sut)de.
0

Suppose that the initial function ug(z) decreases rapidly enough as well as its
x-derivatives. At the point = 0 the function ug(z) and derivatives vanish. The
following Sturm-Liouville problem —y" + ugy = €2, ¢'(0) = —i&y(0), y(+o0) = 0
on the half-line [0, +00) is supposed to have no nonzero solutions. Under these
assumptions global solvability of the IBV problem (6)—(8) is proved.

The problem (6)—(8) is studied by means of the inverse scattering transform
method. Remind its essence. Use the Lax pair of the KdV equation

Y + uy = %, (9)
Yt = ugy — 2(u + 26%)ys. (10)

Define two eigenfunctions e*(z,&) of the Sturm-Liouville equation (9) on the
half-line z > 0 such that

et(z,6) = e for z — oo,
e (z,6) = e %% for z — 0.

262 Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 2



Integrable initial boundary value problems

The scattering matrix s(§) = (Z Z) is defined in the usual way

et (2,€) = a(§)e” (z, =€) + b(¢)e” (2,8), (11)
e (2,€) = —b(—&)e" (z,€) +a(é)e” (z,—¢). (12)

The principal obstacle preventing to apply effectively the ISM to IBV problem
is connected with the following circumstance. Generally, the scattering matrix
s(&,t) of the Sturm—Liouville problem on the half line depends on ¢ not explicitly
but by means of the following nonlinear equation [8]

St = 4’i£3[8,0'3] +P10'18+P2025+P30'38, (13)

where Pt = ug(0,1), P2 = g (—4u(0,8)&2 + gy (0,8) — 2u2(0,1)), Py = 5¢(2u2(0, 1)
—4.(0,t)). However for boundary conditions of some special kinds this equation
may admit discrete transformations which will simplify the problem. For instance,
in the case (7) the equation (13) reads as

¢ = 4i€3[s, 03] + ugz(0,t) 01 5. (14)

Actually the problem is nonlinear, because both s(¢,t) and u,(0,t) are unknown.
The last equation is nothing else but the Zakharov—-Shabat system, having the
following remarkable property (see [9]): if the solution of the scattering problem
is known at a point ¢ = %y but for all values of the spectral parameter then
the scattering solution can be recovered for all ¢ by means of solving a linear
problem called Riemann problem of analytic factorization. Generally the columns
of the scattering matrix give two vectorial solutions of the system (14) defined on
different complex semi-planes. However this is not enough to recover completely
the system (14). The discrete symmetries allow one to get new solutions from
known ones and in such a way to find complete solution of the scattering problem
for t = 0.

The columns s1(€,t) and s9(€,t) are analytic vectors in upper and lower half
planes respectively. The system (14) is invariant under the change of variables
¢ — w€, where w3 = 1. Therefore the vectors si(wé,t) and so(wé,t) are also
solutions to this system. One can introduce a new spectral parameter z = &3.
And then the matrix

C+ (z’ t) = (31(w§7t)’ 32(§7t))

is a solution of (14) analytic for Im z > 0. Similarly c_(z,t) = o1¢4(2,t)o1 is a
solution analytic for Im z < 0. These two solutions satisfy the Riemann problem

C_|_(Z, t) =C- (z’ t)p(z,t),
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where p(z,t) = e~*%93p(z,0)e**73. Note that at the origin ¢ = 0 the scattering
matrix s(£,0) has a pole except some degenerate case [10] and by this reason
the conjugation matrix of the corresponding Riemann problem has singularities
on the conjugation contour and one cannot use the standard Zakharov—Shabat
scattering theory.

It is more convenient here to use the equivalent scalar equation. Time evolu-
tion of the eigenfunction e*(o,£,t) = me¥i€’t ig given again by Sturm-Liouville
type equation

my = (w(t) — 1656)7”,

where w(t) = ugz(0,t) +u2(0, ).
An important observation is that the auxiliary potential w(t) is continuous
and vanishes. So that the scattering matrix for the last equation is also defined

correctly )
A B

where z = £3. Introduce the scattering data for these two equations as follows

b(¢) B(z)
r(€) = —=, R(z)= .
=gy M)A
Two spectral data are connected with each other by formula
—2 -1
r(—=¢) = R(z), for TW <argé < Tﬁ

Such kind of connections between t- and z-scattering data are called "global
relations" (see [3]).

Lemma. If the equation y" = (uo(x) — &2)y has no discrete eigenvalues then
the function R(z) satisfies the conditions:

R1) |R(2)? <1-C22(1 +2%) ! and R(z) = O(z 1) for z — Fo0;

R2) the function

o

_ i —1iYz

k(y) = 5 / e YR(z)dz < o
—00

is absolutely continuous and its derivative k'(y) satisfies inequality

/ (1+ [y]) ¥ () |dy < oo
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R3) the function

0 B 52
A(2) = exp(——— / log(1 — |R(s)| )ds)

271 s—z
— 00

is continuous in the closed upper half-plane and

lim zA(z)(R(z) + 1) = 0;

z—0
R/) R(z) is analytic in Imz > 0.

To prove the statements we use the following transformation
o0 o
r©) = [ s = [ P k()dy = R
0 0

converting ¢(z) into k(y). Actually it acts as

o0
3 _
k(y) = E/Sy tq(z)o(s)dz, k)| < alla(@)]] - |lv(s)]],
0
where s = zy~1/3, v is the Airy function, i.e., a solution of the Airy equation

v"(s) = sv(s), the norm means Li-norm. The map is bounded and invertible, the
inverse map is also bounded, it is of the form

™

q(z) = Zi/syl/?’k(y)v(b‘)dy, lg()]] < eal (k)] - [[o(s)]]-
0

Now solving the Gel’fand-Levitan-Marchenko equation [10]
my (Z, t) =m- (Z, t)R(Z) + m—l—(_za t)

one can recover eigenfunctions my. Then time evolution of the scattering data
r(&,t) is easily found

9izt12my (2,1) —myy(z,1)
izm-l—(za t) + m+t(za t) .

r(=¢,t)=e

The next step is to recover the potential u(z,t) by using known 7(£,¢). This part
is done by the standard method. Thus the following fact is established:
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Theorem. Let the initial value satisfy the conditions:

1) u(z,0) = ug(x) is smooth and vanishes;

2) the associated Sturm-Liouville operator has no discrete eigenvalues. Then
the problem

Ut = Uggy — bugu, x>0,1>0, (15)
'Ul|$:0 =0, Umm‘z:O =0, (16)
ult=o = uo(z), uo(T)|z—400 — 0. (17)

1s uniquely solvable.

By using the technique above the following asymptotic representation can be
obtained

s (0, ) = %(1 +o(1)), fort — oo

in the case of general position when the scattering matrix is unbounded at the
point & = 0. It follows from the formula

_ Ci9pr (t) + Catja(t)
Crip1(t) + Catha(t)

where 1)1, 19 are solutions of the equation 9" = w(t)y having the following
behaviour at the infinity

uz(0,1)

¢1(t) = 1+0(1), ’(ﬁg(t) :t+0(1), t — oo,

The function uz(0, %) is localized only in the degenerate case |a(0,0)| < oo, and
then the condition uz(0,t) € L1]0,+00) is valid [11]. The corresponding initial
functions form nonempty but rather narrow class.
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