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It is known that, under a small perturbation (of order €) of lump (soli-
ton) for Davey—Stewartson (DS-II) equation, the scattering data become
nonsoliton. As a result, the solution has the form of Fourier type integral.
Asymptotical analysis, given in this work, shows that in spite of dispersion,
the main term of the asymptotic expansion for the solution has the solitary
wave form up to large time (of order £71).

Introduction

The Davey—Stewartson II (DS-II) equation, describing the interaction of the
gravitational and capillary waves on a surface of a liquid [1], is the example of the
2+1-dimensional equation integrable by the inverse scattering transform (IST)
see [2, 3].

Presence of solitary waves in solution of the DS-II equation is determined by
existence of singularities of solution for auxilary scattering problem [2, 3]. Hence,
the problem of the soliton stability and of variation of its parameters is reduced
to study of the dependence of the spectral data with respect to the perturbation.
For 1+1-dimensional integrable equations, it is well-known [4, 5], that a small
perturbation of the potential for the scattering problem implies a regular variation
of spectral data and, hence, small changes of soliton parameters.
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Perturbation of soliton for Davey—Stewartson II equation

In this work the problem of the small perturbation for the 2-dimensional soli-
ton of the DS-II equation is considered. It would be naturally to expect results
similar to results for perturbation of solitons for the 1+1-dimensional integrable
equations. However, the asymptotical analysis for the DS-II equation [6] showed
that the soliton structure of the scattering data disappears under a small per-
turbation. Therefore the soliton is unstable with respect to perturbation of the
initial data [7]. Hence, the solution of the perturbed problem vanishes as ¢ (time)
tends to infinity ([8]).

In this paper we show that, in spite of the nonsoliton structure, the per-
turbed soliton solution conserves the soliton-like form for the principal term of
the asymptotics up to long time, and calculate the evolution of the parameters
for this soliton-like solution.

The structure of this paper is following. The setting of the problem and
the main result are formulated in Section 1. In the next auxiliary section we
remind the IST scheme for the DS II equation [3]. The asymptotic behavior of the
scattering data for perturbed soliton solution is given in the third section following
[6]. In Section 4 we solve the inverse scattering problem in the nonsoliton case
asymptotically. The asymptotic solution allows to obtain the perturbed soliton-
like solution for the DS-IT equation in Section 5.

1. Setting of a problem
The DS-II equation system is considered in the form [3]:
100 +2(02 + ) + (9 +9)g =0, 9z9 = :lqf’, (1)

where z = x + 1y, and the overbar is complex conjugation.
The elementary solution of the equation is the lump or soliton (see [3]):
20,

z,t) = ¢°(2,t) = - exp{koz — koz + 2i kQ—I-EQt,
Q( ) q ( ) |z+4zk0t+,u0|2+|1/0|2 Xp{ 0 0 ( 0 0)}

, 2
—4(z + 4ikot + po)
(|2 + 4ikot + pol® + [10]?)?’
where ko, v9 and pg are arbitrary complex numbers.
In this paper we consider the initial-boundary problem for (1) with perturbed
soliton in the initial data:

g(z,t) = go(z’t) =

q°(2,0) = ¢=(2) = 9o(2) + eq1(2), (2)

where ¢°(2,0) = qo(z), g1 is a smooth function with a finite support and ¢ is a
small positive parameter. The main result of the paper reads as follows. The
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solution (2) of (1), has the soliton-like asymptotics up to ¢t = O(e™}):
21
|z + 4it(ko + €k1) + pol? + |vol?

¢ (2,1) exp{koz — Koz + 2i(k2 + Fo)t},  (3)

—4(2 + 4’it(k0 + €k1) + ,Lt0)2
(|2 + 4it(ko + k1) + po]2 + [wo[?)?’

gs(z,t) ~

where

1 JR—
=—— [ dzAdz I — .
ki=—5- / z A d PEYmEEP m(q1vo exp{zko — zko}) (5)

Hereafter, dz A dz = —2i dx dy.

2. Preliminary

The solution with smooth and decreasing as z — oo initial data for (1) is
given by the IST method (]2, 3]). The auxiliary scattering problem for (1) has
the following form [2, 3]:

9: 0 0 9(2,0)
( 0 0, )w(k,Z) = ( 20) (2) >¢(k,z), (6)

2

E(—kz)p(k,2) — ( . ) 2 o0, (7)

where E(kz) = diag(exp(kz), exp(kz)). The scattering data £ of the problem (6),
(7) consists of the continuous and discrete parts. The first of them is defined by
the equality

]

b() = 5 [ dz A dza(2,0) B () exp(kz), Q
s
where (1) is the corresponding component of the vector .

If 4 has no singularities with respect to k, then the discrete part £% = () and
the solution is nonsoliton, i.e., it vanishes as ¢ — oo ([8]). In the nonsoliton case
the solution of the DS II equation has form

o2.0) = =5z [ e alalC. P, )
alz.t) = © [ do Adpblp) 6 et ) exp{isest.p)), (10)
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where s(z,t,p) = 2t(p? + p?) — i(pz — pz) and ¢V (z,t, k) is the first component
of the following boundary value problem

= o b(k) exp{—is(z,t,k)} _
% = (_yexplite ) o L
¢—>((1)), k — oo. (11)

The discrete part £¢ of the scattering data consists of the singularities of 1)
and of some their characterizing constants. Namely, this part corresponds to
the existence of the solitons and describes their parameters. The case, when the
continuous component vanishes, corresponds to the pure soliton solution. The
1-soliton solution is the example of the pure soliton solution. In this case

p(k, z) = po(k, z) = By (kz) — 22Eko)z} 4, (), (12)
L= ¢ = {ko, po, 0},

where E(kz) is the first column of the matrix E(kz) and

A4(2) 1 ( (z + po) exp{zko} ) _ (13)

|z + po|? + o2 vy exp{zko }

So, for the unperturbed initial condition, spectral data £ = Lg has form Ly =
{£5; L5} = {{ko, po, v }; 0}

On the other hand, asymptotical analysis in [6] showed, that for the perturbed
initial condition, spectral data £ = L. reads as L. = {£%; LS} = {0;b.(k)}.

3. Asymptotics of the scattering data

Here we remind the result of [6] for scattering data of perturbed soliton in
the initial condition (2). In this case the scattering data contain the continuous
part only. This continuous scattering data are O(e) on almost complex plain, but
have a big magnitude O(e 1) near point k. This point is associated with pole of
the solution for the Dirac equation (6) for a nonperturbed case.

be(k) ~ ebi (k) for [k — ko| > /2, (14)
bo(k) ~ e 'B_y (’“ _gk(’) + By (k _Eko) for |k — ko| < 2672, (15)
B_y(k) = @ (16)

Qi +1Q2 + K>
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7

bi(k) =~ / dz A dz (95" vy +ar o v @). (17)

Hereafter

, _
Q=1 /dz ndz (@ AV CY + g AP ), (18)

and Agm), w(()m), zp;’(m) and C](-m) are the components of the vectors A1, 1o, ¥
and C; defined as

exp{(—k + ko)z}

Vi (k.2) = Bu(—kz) + SRR 02, (19)

_ 1 (z + po) exp{—=zko}
) = L B T TP ( o exp{ ) ) ’ (20)
Cy = o, a=<2 _01> (21)

Here v (k, 2) is the solution for formal adjoint equation for (6) with respect to
sesquilinear form:

(frw)g = / dz A dz (@ fOuw®) + g fPuw@),

where @, w® are components of vectors f, w.

Remark 1. One can see that &by (k)|x_k, = O(glk — ko|2). It leads to
nonapplicability of external asymptotics (14) near ky. Therefore near kg we must
construct internal asymptotics (16). The domains of applicability of external
(14) and internal (16) asymptotics are defined by applicability of corresponded
asymptotic solutions for (6) (see [6]).

4. Asymptotics of solution for inverse problem in nonsoliton case

From the results which are reminded in the above sections one can see the
solution of the initial-boundary problem for (1) is reduced to investigating the
perturbation of the D-problem for (11) with b(k) = b.(k).

For b(k) = b.(k) and |k — ko| > €'/2, the asymptotic solution ¢ = ¢° of the
problem (11) is constructed in the form:

¢ (2,1, k) = do(z, 1, k) + 1 (2,1, k) + ... (22)
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Putting (22) and (14) in (11), we obtain the following problems for ¢y:

(a()E (;)k)gbo:o, ¢0—>(é), k — oo. (23)

Obviously, the function
eh
1+ 2
bo = ( 55 ) (24)

k—ko

satisfies (23) for any 8™ independent of k.

Since, for |k —ko| < 2¢'/2, b, has the form (15), it is naturally to come in (11)
to the variable of the same scale k = (k—ko)e . In this domain, the asymptotics
of ¢* we construct by using the method of matched expansions [9]. Following this
method, we rewrite the asymptotics of (22), (24) as k — kg in the "inner" variable

x and obtain that:
Je1S) 1
_1 -
¢E:€ (ﬂ’&))—i_(o)_'_...

The latter equality implies that, for |k — ko| < 2e'/2 (or |s| < 2e71/2), the
asymptotics of ¢* has the structure

QZSE:Eil(I)_l—F‘I)()—I-... s (25)
where the coefficients satisfy the following boundary conditions

a0
d = ( o )(1+0(1)) and ®¢ — ( (1) ), as K — 0. (26)

®
Denote, so = s(z,t, ko), | = 4ikot + z, T = €2t. In this variables we have, that
s(z,t,k) = 8o — €i(lk — IK) + T (k* + R?). (27)

Putting (25) and (15) in (11) and taking into account (27), we obtain the following
equations for ®;:
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where

Qo(k, 80) = — |Q16|221 ixfgfi}@z’ Q1 (k, s0) = Bo(k) exp{iso},

Z(k,1,80,T) = Qo(k,50) ((kl — Kl) +iT (> + &?)) .

Remark 2. These equations are obtained by neglecting of terms order
by O(e2T?), then this approach is valid up to T' = 2et < Ty = Const > 0.

The equation (28) has two linearly independent solutions decreasing as k —
00, only:

_ 1 Q2 ey
A“‘m+Qw+«%P(mew%}>’ Az =i

Hence, the solution of (28), (26) reads as follows:
oy = AB, (30)

here A is the matrix with the column A; and f is vector.

For calculation 8, we consider the problem (29), (26) for ®;. Using the
Cauchy—Green formula, we rewrite the boundary value problem (29), (26) in
the form of the integral equation:

(I — H[Q0])Po = F, (31)

where [ is the unit matrix,

i _ h(m)
mmmmz—%/MMW{MM g~)mm,

—K

3

F— ( . ) +H[(Q) + Z2)]P 1. (32)

Denote
(w, v}y = / dn A dr (5D + @5,

where w®, v() are the components of w and v. One can see that

(H[hlw, v} = (w, H[h]v)s. (33)
Hence,
_ 1 Q2+5 -
S PR RERR TONE ( Q1 exp{—iso} ) B2 =ob
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are the decreasing solutions of the adjoint equation

(I —H[0])B; =0 (34)
and the solvability conditions for (31) have the form:
(F,Bi)qz =0, i=1,2 (35)

Putting (32) in (35), taking into account (33), (34) and evaluating integrals
one can see, that the solvability conditions are reduced to the following equations
for definition of the components S(+2):

a1 exp{iso}BY) + (ax — 27 (2TQ2 —il)) B?) =0,
(az — 27 (2TQ; + il)) BY) — @1 exp{—iso}B® = 2im, (36)

where a; are some constants. They are defined below.
From (36) we deduce that:

1) B 27ri(a2—27r(2TQ2—il))
B (laT’ 30) - ‘a1|2+|a2_27r(2TQ2—il)|2,

(2) _ 2imar exp{iso}
B (la T, 30) - |a1|2+|a2727r(2TQ27il)\2 . (38)

(37)

Thus, the asymptotical solution of (11) has the form (22), (24), for |k — ko| >
€1/2 and the form (25), (30), (38) for |k — ko| < 2¢1/2.

5. Asymptotics of solution for DS-II equation

As above mentioned, in the nonsoliton case, the solution of the DS-II equation
can be constructed by the formula (10). Putting the asymptotics (14), (15) of the
scattering data and the asymptotical representation (22), (25) of ¢° in (10), we
see that

¢ ~ I 4 [in ase — 0, (39)

where I = 6% S dk A dk ¢(()1) (k)b1(k), (40)
k—ko|>&1/2

rm—e2i [ dkAdk®Y)(k)B_i (k). (41)
|k—ko|<el/2

Here, gb(()l) and <I>(_1% are the first components of the vectors ¢y and ®_1, respec-
tively.
Putting (17) and (24) in (40) and putting (16) and (30) in (41) we obtain:

I° = 0(e'/?), 1™~ 282, (42)
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This get formula for the leading term of ¢°(z,1):

4imay exp{iso}
la1|2 + |ag — 27 (2TQ —il) |2)°

qg(zat) ~ ( (43)

For definition of the values of a1 and a9 we take into account that ¢°(z,0) ~ go(2).
This gives a1 = —i277g, and ag = i2mwug. This formulas and (9) imply (4).

[1]
2]

3]

[4]
[5]
[6]

[7]
8]
[9]

280

References

A. Davey and K. Stewartson, On the three-dimensional packets of surfase waves.
— Proc. Roy. Soc. London, Ser. A (1974), v. 338, p. 101-110.

A.S. Fokas and M.J. Ablowitz, On the inverse scattering transform of multidimen-
sional nonlinear equations related to first-order systems in the plane. — J. Math.
Phys. (1984), v. 25, p. 2494-2505.

V.A. Arkadiev, A.K. Pogrebkov, and M.C. Polivanov, Inverse scattering transform
method and soliton solutions for Davey—Stewartson II equation. — Physica D (1989),
v. 36, p. 189-197.

D.J. Kaup, A perturbation expansion for the Zakharov—Shabat inverse scattering
transform. — SIAM J. Appl. Math. (1976), v. 31, p. 121-133.

V.I. Karpman and E.M. Maslov, Structure of tails arizing under perturbation of
solitons. — Zh. Exper. i Teor. Fiz. (1977), v. 73, p. 537-559.

R.R. Gadyl’shin and O.M. Kiselev, About non-soliton structure of perturbed soliton
solution for Davey—Stewartson equation. — Theor. Math. Phys. (1996), v. 161,
p- 200-208.

R.R. Gadyl’shin and O.M. Kiselev, Structure of tails arizing under perturbation of
solitons. — Theor. Math. Phys. (1999), v. 118, p. 354-361.

O.M. Kiselev, Asymptotic behaviour of non-soliton solution of Davey—Stewartson
IT equation. — Diff. Ur. (1997), v. 33, p. 812-819.

A.M. I’in, Matching of asymptotic expansions of solutions of boundary value prob-
lems. AMS, Providence, RI (1992).

Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 2



