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For the model of rough spheres the bimodal distribution with inhomoge-
neous but stationary Maxwellians is considered. It approximately describes
the interaction between two flows, which can rotate as a rigid body about
the immovable axes. Conditions ensured the infinitesimality of the uniform-
integral remainder for the accordant Boltzmann equation are obtained.

The model of rough spheres takes an important place among many models
used for the description of the behaviour of molecules in the kinetic theory of
a gas. It successfully combines comparative simplicity and sufficient physical
verisimilitude [1]. Bryan [2] was the first who had taken into consideration this
model; some later Pidduck [3] carried out its investigations. Recently, the works
devoted to this model and some of its generalizations appeared again [4-6]. The
description of the interaction between uniform flows in a gas of rough spheres was
proposed in [7, 8]. The accordant explicit approximate solution of the Boltzmann
equation has a form of a linear combination of two global Maxwellians with zero
mass angular velocities but arbitrary mass linear velocities.

The aim of the present paper is the construction of bimodal distributions
for the description of the interaction between two non-uniform flows in a gas of
rough spheres. Now they must include local Maxwellians of a special type, the so-
called spirals, which correspond to stationary equilibrium states of a gas [1] (the
analogous approximate solutioms in case of a gas of hard spheres was studied in
[9, 10]). The exact statement of the problem is the following.
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We consider the Boltzmann equation for rough spheres [1, 6-8|:

D(f) = Q(f, 1), (1)
() =T 103 ®)
Q(f, f) f/ﬁm/@g/@hvrwa»
R3
x[f(t,z,v*, ") f(t,z,v],w]) — f(t,z,0,w)f(t,z,v1,wr)]- (3)

Here d is a diameter of the molequle, which is connected with its moment of
inertia I by the relation:

== (4)

where the constant b € [0;2/3] depends on the inside structure of the molecule;
f(t,z,v,w) — the distribution function we want to find; ¢ — the time; z € R® —
the p051t10n of a molecule; v;w € R® — its linear and angular velocities, respec-
tively; a — the spatial gradient of the function f; ¥ — the unit sphere in R3;
a € ¥; the function h is of the form

h(u) =

o+ [u), (5)

and linear (v*;v}) and angular (w*;w]) velocities of two molecules before the
collision are expressed in terms of accordant values v, v1,w,w; after the collision
by the formulae:

vt =v— b_l_%{b(v —v1)+alv—uv,a)+ %bd[a X (w+ w1)l},

=1 + b+—1{b(v —v1) +afv—uv,a)+ %bd[a X (w+ w1)]},

Wt =w+ ﬁ{[a x (v—wv1)]+ %d[a(a,w +wi) —w—wi]},
W = w4 w+nﬂax( ﬂ+%ﬂdmw+wﬂ—w—mﬂ. (6)
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The only class of the exact solutions of the equations (1)—(6) is known by now,
namely, the Maxwellians:

M(t,x,v,w) — pIS/Z(é)Be—ﬁ((v—ﬁy-f—I(w—a;)z)’ (7)
™

where the hydrodynamical parameters p (the density), 8 = 5~ (the inverse tem-
perature), ¥ (the mass linear velocity of molecules) and @ (their mass angular
velocity) can, generally, depend on ¢ and z in a special way [1]. If @ = 0, then
p, 8,0 are constant (i.e., M = M(v,w) is the global Maxwellian considered in [7,
8]). Now we suppose, that @ # 0 is an arbitrary constant, then as it is shown
in [1], the local Maxwellian (7) has a following form (stationary, inhomogeneous,
equilibrium state of a gas of rough spheres, analogous to spiral from [9, 10]):

M(z,v,w) = peﬂ[ﬂlx(m—mo)]2[3/2(é)i’»e*ﬂ[(v*ﬁ)zﬂ(wfﬁ)z}, (8)
T

?=9(z) =0+ [w X z], (9)
..

zy = E[w X 7). (10)

From the physical point of view, the distribution (8)—(10) describes the rotation
of a gas in whole (as a rigid body) with the angular velocity @ about the axis
which pass through the point z(, and, besides that, its translational movement
along this axis (the density of a gas now depends on z, t00).

Let us seek an explicit approximate solution of equations (1)—(6) in a form of
bimodal distribution:

2

F=Ywilt,z)M;, (11)

=1

where M;, i = 1,2, are of the form (8)—(10) with arbitrary corresponding values
of parameters p;, B, vi,wi, zos, © = 1,2, and ¢;, ¢+ = 1,2, are some non-negative
coefficient functions from C*(R! x R3).

The problem is: to find ¢;,7 = 1,2 such, that the following uniform-integral
remainder [7, 8]

S R/ do R/ dw |D(f) - Q(f. f) (12)

t,z)ER!

tends to zero with corresponding behaviour of all parameters of the distribution.
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For more convenient formulation of main results let us accept such a definition.

Definition. We will write:

LimA = 0, (13)
if it exists such a value A', that
A<A (14)
and
lim A'—0 (15)

Bi—+00,1=1,2

with some choice of the functions w;,1 = 1,2 and special behaviour of all param-
eters, except B;,1 = 1,2.

Theorem 1. Let
it @) = it w)e Ao @m0l = 1 g, (16)

where the functions 1; are independent of B;, 1 = 1,2, and the following expres-
sions are bounded on R' x R3:

oY; | 0Y; oY;
i S |G s el (fe x 2, 52 ), (17
where ©y; € R — arbitrary fized vectors, and
w; = woisif ", (18)

where s;,m; > 0 — any constants, 1 = 1,2.
Then the statement (13) holds true in the following situations:

1
L m; > 3 1=1,2, (19)
and at least one of the suppositions is valid:
1) 71 =19 =0, (20)
¢i = 1,01(.’1)) (21)
2) =10z #0, (22)
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Wi X 7] = 0, (23)
Yi = Ci([z x v;]), (24)
Vi = Ci(z — v5t), (25)

where C; > 0 are arbitrary finite or fast decreasing functions on the specified
vector arguments.

3) o1 =0, v} #0, (26)
vy || @1 || w2, (27)
d— 0, (28)
M1+ ppe = g([z x v2]), (29)
P1 = g(lz x R]){A + C([z x %2])
' (po | ;i P2
—ad? |5 s E_ (P2 PL) _ P2\ |11

xexp| -l oo x ) (5 (248 ) = 20t @
where A, > 0 — arbitrary constants, and the functions g,C have the same

properties, as C;, i = 1,2 in (24) or (25).
4) 01 # 0; 02 # 05 01 # 02, (31)

; has a form of (25), and

suppipr N suppipe = 0, (32)

and (23) is satisfied.
5) i have a form of (24) or (25), and the requirements (31),(28) and
(23) are satisfied.

1. mi=~,i=1,2, (33)

57
one of the suppositions 1)-5) of the point I holds true, and, in addition to that,

si—0,i=1,2, (34)
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or
si = 0; [woj X 0] =0, i # j, (35)

or (23) is fulfilled.
IT1. (23) holds true together with one of the suppositions 1)-5) of the point I,
and

m; € (%,%), i=1.2, (36)
or
.
mi:Z’ ZZl,2 (37)

and (34) is fulfilled.

P r o of. After the substitution of (11) into (1)—(3), with taking into account
of the technique developed in [8, 9], the integral from (12) can be estimated from
above in such a way:

2
dv [ dw|D(f) — QU NI < P2 pin 367 [ du | dw
[+ S o]

3 R3

x W Pl (=)’ [Ai(u,t, T) + o + Ai(u,t, z) + Bi(u,t,z)

| e

ot
where
d? 2| U w
Ai = h1popj—= [ dwe ™™ + v — vj + [(wi — wj - —= 39
; mﬁR[ we | o @) <l - (9
Bi(u,t,z) = %( uﬁz + 0 + @i ¥ x])
+ 207/ Bi{ =@ x u] - @i x ] + (u, [@; x 7])}. (40)

Next, the value A’ for (14) we will obtain, if take supremums with respect to ¢,z
of both summands under the integral sign in the right-hand side of (38) (note,
that the existence of such A’ ensured by (17), (39), (40)).

Now, integration in the expression for A’ with respect to w yields:

2
A= Z pim 32 / due™ sup  A;(u,t,x)
: (t,z)ER' X R3
=1 R3 ’
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+ sup %

+ AZ(U, t, JJ) + Bz(u7 i SC)
(t,2)eR x B3| Ot

]. (41)

If we substitute (18) into (39), (40) and use the Lemma 1 from [9], we can pass
to the limit in (41). The result will be different:

L, if (19), or (36) and (23),

im A'=|L+K, if (33) (42)
Bi—+00,i=1,2 ' ’
: T L+ N, if (37) and (23),
where:
2
0 O,
L= Y pi sup (.;pz-Fﬁi%ﬂLpﬂdQ%% |0; — 74
Z,]:l,’t?é‘] (t,$)€R1XR3 t €z
+2nd’pipa |01 — | sup (i), (43)
(t,z)ER! x R3
42
K=—> pisi|woi xv]| sup 4, (44)
\/7712_; T T i peR xRE
42
N=— pis?|wos| sup  ([woi % z]es). (45)
\/77; U aerixme '

Finally, from (43)-(45) it can be checked directly, that the expression (42)
tends to zero (i.e., (15) holds true), if one of the suppositions of points I-IIT of
the Theorem in each accordant case is fulfilled, so, we obtain (13).The Theorem
is proved.

Remark 1. The function of a form (24) or (25) can satisfy the conditions
(17) only if (23) holds true. Hence, the requirement (32) contradict (24) but not
(25) because (23) means that zg; = 0 (see (10)), i.e., the axes of spirals intersect
with each other, so in the stationary case (32) and (23) cannot fulfilled together.

Remark 2. The pair of functions (29),(30) was described in [9]; it is one
of the non-trivial solutions of the system:

oY _0OY;

ot + 0; o = _Pjﬁd2¢1¢2 |U_2|a 1, =1,2;1 7& Js (46)

and, at the same time, satisfies the condition (17), if (26),(27) are true.
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Theorem 2. Let the distribution f be of the form (11), where the functions
pi,1 = 1,2, are independent of B;,1 = 1,2, and the products of the expressions

eBilix(z—z0i)]? (47)
for each i = 1,2 on the values

i _ Opi . _
2 x| S o

L Opi |00
oz

(pl? 8t ?

; pilwni x 7] (48)

are bounded on R' x R when B; — +o00,i = 1,2, and the conditions (18),(23)
and (19) or (33) are fulfilled. Let the functions

& = i exp{silwo; x o]*(1 — sign(m; — 7))} (49)

satisfy one of the suppositions 1)-5) of the point I of the Theorem 1 with the
substitution of & instead of v;. Then the statement (13) holds true.

P r oo f If we substitute (11) into (1)—(3), transform and estimate the
integral from (12) in the manner, analogous to (38)—(41), and introduce the value
A/ like in the proof of the Theorem 1 (its existense follows from (47), (48)), with
taking into account, that, because of (10), (18), (23) and (19) or (33),

lim B0 = expl sl x 22(1 — sign(mi — )}, (50)
Bi—+00,1=1,2 2
then after the limiting passage we will obtain the expression analogous to (43),
which will be include the functions & and ¢;,7 = 1,2. After the utilising of the
Lemma 2 from [9] this expression reduces to (43) with &; instead of ;,7 = 1,2,
so, the last supposition of the Theorem 2 leads to (13) in the same way as in the

proof of the point I of the Theorem 1 (note, that &; satisfy (17) too because of
(47)—(50)). The Theorem is prooved.

Remark 3. In the Theorems 1, 2 we had put the values v;,7 = 1,2, are
fixed. The next theorem is one of the possible results deals with the case, when
w;, U, = 1,2, tend to zero concordantly, i.e., by some "trajectory" in the space
of parameters.

Theorem 3. Let (16)-(18) with (37) are valid, and, in addition to that,
v; = O'ivf)iﬁi_l/Ala 1= 1’25 (51)

where o; > 0;vy; € R3 are arbitrary and fived. Then (13) holds true, if the
suppositions (21) and (84) are fulfilled.
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P roof is analogous to one of the Theorem 1 up to (39)-(41), but now

because of (18) with (37) and (51) the limiting passage gives some other result,
than (42) (the Lemma 1 from [9] is used once more):

) O;
1
ﬁi—>+g}i:1 2 Z pl{ t,x) 22@}1)@3 ot (52)
43 _ _ _
“[s; |lwoil  sup  (|[woi X 2| ) + 06 |[woi X vei]]  sup 1)
\/_ (t,)ER! x R? (t,z)ER! x R

Evidently, (52) together with (21),(34) leads to (15). The Theorem 3 is proved.
Remark 4. The physical sense of the results, obtained above, is analogous

to one from the paper [9], where its detailed analysis was done. Therefore, we
will only note here, that the process of interaction between the spiral flows of a
form (8)—(10) in a gas of rough spheres can be described, in principle, in the same
way, as for a gas of hard spheres, despite of the fact, that the Boltzmann equation

(1)~

[1]
[2]
3]
[4]

[5]

[6]
[7]
18]
[9]

[10]

(6) now is more complex, and some technical difficulties arise, as in [7, 8] too.
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