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We present a newly-developed version of the Up-and-Down Algorithm
(UDA) designed for nonlinear approximation by piecewise polynomials, and
establish the order of approximation by this algorithm in weighted
Lg-spaces.
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1. Introduction

The UDA was firstly developed by the authors for nonlinear approximation by
compactly supported refinable functions, see the survey [B1] and the forthcoming
paper [BK]. In this paper we present its version intended for approximation by
piecewise polynomials. We believe that this modification of the UDA will have
important applications to Numerical Analysis and deserves to be presented to
experts in this field. On the other hand, an approximation theorem to be proved
in the present paper has important applications to Approximation Theory. In
particular, one can derive from it the corresponding optimal approximation results
for functions from Besov spaces (see [B2]).
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The algorithm considered in this paper makes use of a collection 7 := {7;;
§ € Z.,} of subsequent subdivisions of measurable set  C R¢. This collection is
equipped with the structure of ordered tree. The input of the algorithms consists
of an integer N > 1 and a set function

F:7T->X,
where X is a subspace of polynomials in R¢. The output is a function
Fy:T—>X

such that
supp Fy :={w € T; Fn(w) # 0} < 4N.

Using this we then introduce an approximation aggregate

Tn(F) =Y Fn(w)xw, (1.1)

where ., here and below stands for the characteristic function of w C R%.

If, in particular, X := P; 4, the space of polynomials of degree s in R4, the
aggregate Ty (F') becomes a piecewise polynomial of degree s with 4N “pieces”.
However, supp Tn (F') does not form a subdivision of € and therefore these pieces
relate to subsets that may differ from subsets w € T .

We present the description of the algorithm in Section 2. In the next section,
we apply the algorithm to establish a general approximation theorem for functions
f€Ly(), 0<p< oo, presented in a form

f= E fwxw (convergence in Ly).
weT

In this case the aforementioned function F' is defined by F(w) := f,, w € T, and
we estimate the rate of approximation of f by Tn(F) in a weighted L,-norm,
p < g < oo. In the subsequent paper [B2|, this theorem is applied to derive the
corresponding approximation results for Besov spaces. The aggregate (1.1) in this
case yields an optimal in order rate of approximation showing the efficiency of
the algorithm.

2.  The algorithm

2.1. Tree of subdivisions

We begin with the introduction of a tree of subdivisions T. Let € be a subset
of R? with finite d-measure ||, and 7T is a collection of subsets of Q. 7T is called
a tree of subdivisions for €1, if the following holds.
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(i) Every o' ,w" € T either nonoverlap, i.e.,
lw' N =0,

or one of them is contained in the other. This condition introduces an
ordered tree structure on 7. Actually, we regard subsets of T as vertices
and connect w',w"” € T by the edge directed from ' to " (written ' — w")
if ' C w" and there is no set of 7T situated between them different from '
and w".

Assume that Q € T. Then T is an ordered tree with the root Q2. Hence each
w € T can be connected with Q by a unique array. In other words, there is
a collection {wj;:1<j <n} C7T such that wy - wy — -+ = wy, (i.e., this
collection is an array), and w; = w and w, = Q. Because of uniqueness of
this array one can correctly define a height h : T — Z letting

h(w) := (card A) — 1, (2.1)

where A is the array connecting w and 2. Specially, h(£2) = 0.
Set now for j € Z4

T ={weT:h(w)=j} (2.2)
These form a partition of T:

TiNTy=¢, if j#5 and T= J T, (2.3)

JEL+
(i) For every j € Z,

supp7; := U w = (2.4)
weT

In other words, {7} is a sequence of consequent subdivisions of €.

To formulate the last condition one set
Sw)={" €T : v = w}. (2.5)

In accordance with the terminology of Graph Theory, each element of this
set is a son of w (and w is its father).

(iii) There is a constant C(7) such that for every w € T

1 < card S(w) < C(T). (2.6)
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Definition 2.1. A collection T of subsets of Q is said to be a tree of subdivi-
sion, if it meets the conditions (i)—(iii).

2.2. Weighted /,-spaces on 7.

Let w:7 — Ry be a weight, and 0 < p < co. Introduce a space £;(7; X) of
functions F': T — R defined by the quasinorm

Il = {Z (wtwrsup iF )] } . @)

weT

Note that the w-term of this sum with unbounded w is finite, only if the polynomial
F(w) is constant (or w(w) = 0). To avoid unnecessary complications we assume
that Q is bounded.

The input of the algorithm comprises a fixed F' € £;(T; X) and integer N > 1.
Because of homogeneity of (2.7) we can and do assume that

1| p,r = 1. (2.8)

2.3. Basic arrays
Given F, we introduce a cost function T : 2T —R, by

I(S) = Z(F; S) = {Z (w(w) sup |F(w)|)p} . (2.9)

weS

Specially, for the subset

Tw):={w"€T:d Cw} (2.10)

we simplify this notation by setting

IZ(w) == I(T (w)). (2.11)

Note that Z(w) # Z({w}) := (w(w)|f(w)|)?, and
Q) = 1, (2.12)

see (2.7) and (2.8).
We first introduce the subtree
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Gy ={weT :I(w) >N} (2.13)

Gn is nonempty and has the root Q by (2.12). Since T is an ordered set, the
set Mpy of minimal elements of Gy is well-defined. Hence for each w € My and
every its son w'

T(w) > N~', while Z(v') < N (2.14)

Numerate the elements of My in some order

My i={w™: 1< j<mp}. (2.15)
Since the subsets of My nonoverlap, we have

1=12(Q) > Z(wf™) > mn/N,
i

whence

my < N. (2.16)

Our goal is to partition Gy in order to obtain a collection of (basic) arrays
By. An algorithm fulfilling this operation is the main part of our construction.
In its description we will use the notation

[w,w'] :={w 5wy = ... > wy} (2.17)

for the array connecting w(= w;) and w'(= w,). We also introduce an “open from
the top” subarray of this array setting

[w,w) = [w,w\{w'}. (2.18)

At the first stage we introduce a partition of Gy into a collection A := {4; :
0 < j <mp} of (“big”) arrays satisfying the following conditions:

(a) {A4;:0<j <1} is a partition of the set

g%\l = U [wsminaQ]a 0 <2 <mpy;
s<1
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(b) each A; has a form

A = [wzmin,w)’

where w belongs to some Ay with i < 4. This w is called a contact element
and is denoted by wf; hence

A = WP wf), 1<i<my. (2.19)

Since g;’v = Gy, if i = my, the collection A = {4; : 0 < j < my} forms
the desired partition of the subtree Gy . Besides, A determines the set of contact
elements

Cn = {wj} U{Q}. (2.20)

As we shall see, some of these may coincide and therefore

cardCy <mpy +1, (2.21)

where the inequality may be strict.
In order to introduce A we use induction on j starting with

Ay == {Q} and A; = [P, Q]\4y = [w]", Q).

Assume now that we have determined the arrays A4;, i =0,1,... , 7, satisfying
the conditions (a) and (b) with ¢ < j. Define

Aj+1 = ;I—ll—la U A

1<

Then {A4; : 0 < i < j + 1} is clearly a partition of gj+1. Show that A;i1 has
a form (2.19). In fact, consider the intersection of [w ;T{,Q] with each [w™, 0],

i < j. Since Gy is a tree with the root €, this intersection is of a form [w;, Q], and
{w; : 1 <4< j} is a subset of the array [w ]“fll, Q]. Hence this subset inherits the
linear order of the last array. If w;, is the smallest element of {w;} with respect

to this order, then

Aj+1 = ;r—lﬁllla UA = w;'r—léllla ]\ U[wzminaﬂ] = [ ;I—liirllawzo)
1<j 1<j
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Moreover, w;, € |J A;. Hence the induction is complete.
i<j
We proceed tﬂé refinement of Gy subdividing each array A; by the elements
of the set A; N Cy, j > 1. In this way, we introduce a collection of “open from
the top” subarrays [w',w") where &' is either a minimal or contact element, and
w"” is a contact one. The set of these subarrays one denotes by Ry. According
to its definition

supp Ry := U R = Gn\{0} (2.22)
RERN

and different elements of R do not overlap, i.e., Ry is a partition of (2.22).
At the final stage we complete the partition algorithm subdividing each sub-
array R € Ry into “basic” arrays as follows.
Let w_(R) and w4 (R) be, respectively, the bottom and top endpoints of R,
ie.,

R = [w_(R), wi(R)]. (2.23)

One defines inductively a collection {wf : 1 < £ < ¢B} beginning with

wft := w_(R). If wf has been determined, we choose wﬁ_l as an element from

(wh,wi (R)] satisfying the conditions
I([wf,wﬁ_l]) >N and I([wf,wﬁl)) <N Y

and then set

Bf = [wf', wfy). (2.24)
This element may not exist in the next cases:
(a) wll =wyi(R) or I([wf, wi(R)]) < N7
We define wj} | as the father of w (R) and set

Bf = [wf, wﬁ_l) (: [wf, w+(R)]).

(b) wi' # wi(R) and Z({wf'}) > N~
We define wﬁ_l as the father of w/® and introduce Bf by (2.24).
In this case wﬁLl € R, and the procedure can be continued. Note also that
now B consists of a single point, Bff = {w}}.

Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 3 317



Yu. Brudnyi and Inna Kozlov

Completing the procedure one obtains the partition {Bff : 1 < ¢ < ¢R} of R
into the basic arrays Bﬁ. By their definition

T (Bf\{wi'}) < N71, (2.25)

Note that the argument in (2.25) is an empty set, if Bf is a singleton. Besides,
for £ < ¢% and card (Bf) > 1

I(Bf)> N7, (2.26)

provided that Bf = B U {wﬁ_l}, if BE is not a singleton, and Bﬁ = BE,
otherwise.

Collecting all the basic arrays for all R € Ry, we lastly obtain the desired set
of the basic arrays

By :={Bff:1<t</(® ReRy}

Proposition 2.2. (a) By is a partition of the set Gn\{Q}.

(b) For each B := [w_(B), wy(B)] from By

Z((w-(B), wy(B)]) <N . (2.27)

(c) It is true that

card By < 4N + 1. (2.28)

Proof. (a)follows from (2.22) and the definition of B%.

(b) follows from (2.25), since the argument in (2.27) is B\{w_(B)}.

(c) Using (2.26) and noting that the mutiplicity of the cover of R by {Bf} is
at most 2, one has

fp—1
N~'(tr—1) < Y I(Bf) <2I(R).
=1

This implies, see (2.12),

Y (tr—1)<2N > I(R)<2NI(Gy)<2N,
RERN ReERN
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whence
card (By) = Y £r < 2N + card (Ry).
RERN

By the definition of Ry
card (Ry) < card (Cn) + card (My) < 2N + 1,

see (2.16) and (2.21).
Combining the last estimates we get (2.28). ]

2.4. The output of the algorithm

The output of the algorithm is a function F on T defined as follows.
If w:= w_(B), the bottom endpoint of a basic array B € By, then

Fy(w) == (Z F(w’)) Xw- (2.29)

w'eB

We also let Fix(f2) := G(Q)xa.
For all other w € T we let

Fy(w) == 0. (2.30)
Hence Fy(w)(z) is a polynomial from X, if € w, and

supp Fx C {w—(B) : B € By} U {Q}. (2.31)

3. A general approximation theorem

Let 7 and X be defined as above. We introduce, first, a subspace of L,(2),
0 < p < o0, consisting of functions f that can be presented in a form

f= Z fuwXw (convergence in Ly) (3.1)
weT

with suitable f, € X.
Then we define the space By’ (7') by finiteness of the Banach norm (quasinorm,
ifp<1)

\flBy () = inf{z (w(w) Sl:}P|fw|) }pa (3.2)

weT

where the infimum is taken over all decompositions (3.1).
Here w: T — Ry is a given weight.
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Assume now that for some p < g < oo the following embedding*
BY(T) C L(dp) (33)

holds with embedding constant C,,,. Here u is a Borel measure supported by 2.
Under this assumption the following is true.

Theorem 3.1. Given f € B)(T) and integer N > 1, there is an N-term
linear combination

Tn(f) = waXw
with suitable f, € X and w € T such that
17 =T 1 gy < ON~# |y (- (3.4)
Besides,
TN 1, 4y < C1F 1B (T- (3.5)

Here the constant C' depends only on Cep,, C(T), see (2.6), and p* := min(1,p).

Proof. Assume that (3.1) is an e-optimal decomposition for f, i.e.,

(Z (w5 1]) ) < (1+6)lflp(r 35)

weT
Without loss of generality we assume that
P
> (wsup I£]) =1 (3.7
w€eT v

Define now a function F': 7 — X by letting
Flw):=f,, weT. (3.8)

By (3.7), this F satisfies (2.8) and we take it and an integer N > 1 as the input
of the algorithm. As the output we obtain the function Fy, see (2.29) and (2.30)
for F(w) := fu. In turn, Fy gives rise to required approximation aggregate

Tin1(f) = faxa + Y (Z fw) Xw_(B)- (3.9)

BeBy \wEeB

* See [B2] for assumptions on 7 and w providing this embedding.
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Let us show that (3.9) provides the desired rate of approximation to the
function f in Lg(dp). Set

$(S) = foxw, fCT, (3.10)

weS
and simplify this notation for S := T (w), see (2.10), by setting
p(w):=¢(T(w)), weT. (3.11)

Note that ¢(w) # ¢({w}) := fuXw-
Proposition 2.2 and (3.10) imply

f=Tuva(f) = Y " (B)+6(T\Gw), (3.12)
BeBy
where we let
¢*(B) = ¢(B) — (Z fw) Xo_(B) = D, fuoXo\w_(B)- (3.13)
weB w€B
Applying to (3.12) the Ly(dp)-norm, we get for C := max(1,2%71)
|f - T4N+1(f)”q < C(J1 + Jo), (3.14)
where
Ji=| Y ¢ B)| , J2=[HT\GN)|, (3.15)
BeBn q

In order to obtain the required estimate for Jq, show that for different B, B’ from
Bn

‘supp ¢*(B) N supp </f>*(B')| =0. (3.16)
Let, first, their top endpoints w4 (B) and wy(B’) nonoverlap. Since by (3.13)
supp ¢*(B) C s (B)\w_(B) (3.17)

and the similar is true for supp ¢*(B’), these supports nonoverlap.

In the remaining case the biggest set of one of them, say wy (B), embeds in the
smallest set of the other w_(B'). Hence supp ¢*(B) C w4+(B) C w_(B'), while
by (3.17) supp ¢*(B') C wy(B')\w_(B’). Thus in this case (3.16) holds, as well.
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Applying (3.16), we get

Ji=3 > "B

BeBy

Using now embedding (3.3) and remembering the definition of the cost function Z,
see (2.9), we have

" (Bllg <

Z |fw|Xw

weB\{w-(B)}

q

»

IN

G ¥ (wlrswir)

weB\{w-(B)}
= CenZI(B\{w-(B)})-
Combining this and (2.27) and (2.28), we have

Q[

Ji < Cem{ Y Z(B\{w_(B)}) »

BeBn

Q[
S =

< ComN 77 card (By) < 42 ConN
According to (3.6) and (3.7) this can be rewritten as
Ji <4i(14¢€)"t CopNi v, (3.18)

To carry out the similar estimate for J we introduce a collection {H;} of subsets
of the set

To :=T\Gn (3.19)
which meets the following conditions.

(a) For every j

I(Hj) < % (3.20)
(b) It is true that
card ({H;}) < N + 1. (3.21)
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(c) {H;} is a partition of To(:= T\Gn).

We introduce the required collection by induction. In this part of proof we
use the following notation: for every T C 7 and w € T

T(w):={w €T:v Cw}
We begin with the set
{weT:I(To(w)) > N '}

Since Z(Tp(w)) < Z(w) — 0 as |w| — 0, see (2.11) and (2.12), this set is either
empty or finite. In the former case we obtain the desired (trivial) partition putting
Hy := Ty. Then Z(Hy) = Z(Tp(2)) < N~', and (3.20) is true. Otherwise, Tp
contains an element w; of minimal measure. Since for each w € T}

I(Tg(w)) <ZI(w) < N7%,

this wy ¢ Ty. Hence we have the disjoint decomposition of Tp(w1):

Tow)= |J Tow)

weS(w1)

recall that S(w1) is the set of the sons of wy, see (2.5). Besides, minimality of wy,
implies for each w € S(w1),

I(To(w)) < N7L.

Hence it is true that

d (S C
I(To(wr)) = Z I(To(w)) < e (N(wl)) < ](\Z—)’
UJES(qu)
see (2.6). Introduce now H; by
H1 = TO((UI)-

Then H; satisfies (3.20). To introduce the next set we put 71 := Tp\H; and
consider the set
{weT:Ti(w) >N}

If it is empty, put Hy := T7 to obtain the desired partition {Hi, Hyo} of Tjp.
Otherwise, this set contains an element wy of minimal measure. As before wy ¢
To(:= T\Gn) and therefore

I(Tl(u)g)) < % .
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Letting Hy := Ti(w9), we obtain the desired subset satisfying (3.20) and not
intersecting H;. Besides,

I(H) =T(Tj—1(wi)) > N1, i=1,2.

Proceeding in this way, we lastly obtain the partition {Hj:1<j<n+1}of Tp

satisfying the condition (3.20). Besides, H, i—1(wi), 1<1i < n,and therefore
TH) >~ 1<i<
i) 2 7 <i<n.

This implies
n
7 < Z D) <I(Fy) <Z(Q) =1,
=1

and the condition (3.21) holds as well.
Using now the partition introduced, we estimate Jo as follows. By the defini-
tion of H; their supports do not overlap:

|(supp H;) N (supp Hy)| =0, j# 4.

Recall that supp H := |J w, H C T. Besides, supp H; = supp ¢(H;), see (3.10).
wEH
Hence

o = [ #(T\GW,

> ¢(H;

j<n+1

=4 > leH)I

q j<n+1

By the embedding (3.3) and the inequality (3.20), and the definitions (2.9) and
(3.2) of, respectively, 7 and the quasinorm of B,’(7") we then have

I$(H) g < ComTI(H,)? < ComC(T)» N 5.

Together with the previous identity and (3.21) this yields

Jo < ComC(T)P N o (n+ 1)t < 20ComC(T)? N1 »

Combining this with (3.6), (3.17) and (3.14), we get the inequality

||f — T4N—|—1(f)||q < CN%_é|f|Bg(T)-

This clearly implies the required assertion (3.4).
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It remains to establish the second assertion of the theorem, see (3.5). By (3.9)
and Proposition 2.2

||T4N+1(f)||q: Jfaxa + Z (Z fw) Xo (B)| <
a

BeBy \w€B

> folxw

wEGN q

Estimating the right hand side by the embedding inequality in (3.3) and then
making use of the inequality (3.6) we have

b)) »
T2 (D], < Cemq D (w(w) sup |wa> < Com(1 +€) ||y (-
wegn v
The proof of Theorem 3.1 is completed. ]
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