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We present a method of direct derivation of the Stokes structure &
from a differential equation. We introduce and revise the related important
definitions and statements using the Weber’s differential equation as an
example. Our technique presented in this paper will be extended later to
matrix differential equations.

In honor of the 100th birthday of Naum Il’ich Akhiezer
The Stokes structure &(2) = G{p1(2),pa(2)} generated by z%e®?, with given

constants «, 3, has been defined in [2] as a pair of functions {p1 (z),pz(z)}

(i) analytic on the Riemann surface of logz with at most exponential growth

at oo,
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The Stokes structure in asymptotic analysis II

(ii) bounded in closed sub-sectors of
3 37
Sa(l) = {z:—T—arga<argz<7—arga,0<|z|<oo}, (1)
T om
S.(2) = {z: 5 —arga<argz<7—arga,0<|z|<oo}, (2)
(iii) satisfying the monodromic relations

p1(2€?™) = p1(2) + T1 2P €% pa(2e*™),

pa(2€¥™) = py(2) + Toz Pe “pi(2) 3)

with complex constants 77, 75.
The phase amplitudes P;, P> of the Hankel functions H, 1(,1), H 52) form a Stokes
structure, with o = 24, 8 = 0, with monodromic relations

Py(ze®™) = Py(z2) + T1 e %% Py(ze¥™), (4)
Py(ze¥™) = Py(2) + The 2*P, () (5)

and with coefficients T1,T5 to be calculated later. This Stokes structure denoted
by G(2) has been introduced firstly in [1], see, also [3].

The Stokes structures for the incomplete Gamma, Bessel’s and reduced We-
ber’s differential equations have been derived also in [2] using the integral repre-
sentations of their solutions in terms of the corresponding Gauss Hypergeometric
functions F(a,b;c;¢) and the monodromic properties of F'(a,b;c;&). However,
such a derivation is not possible in general. Therefore, we present an alternative
way.

Traditionally, the study of differential equations can be reduced to the study
of the corresponding equivalent system of integral equations. It is easy to check,
for example, that the phase amplitudes of Hankel functions satisfy the following
pair of integral equations:

b P1(w+z)d b e2in1(w+Z)

P(z)=1— - 2
1(2) 20 J; (w+2)? v ! (w 4+ 2)? dw, (6)
b [Py(w+2) b [ _opPo(w+ 2)
Pyz)=1+— [ 22222 gy = 2 w22
2(2) =1+ 5 Cwr 22 T2 Twre?z M ™

with their paths of integration being a ray [, starting at the origin of the complex
plane C or of the Riemann surface of log z, and where b = v? — 1/4.

Using integral equations similar to (6), (7) one can study the asymptotic
properties of solutions. Moreover, the monodromic relations (4), (5) can also be
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derived from (6), (7). However, we prefer to show another possibility which we
illustrate by means of Weber’s differential equation

u"(2) + (2E — 2*) u(z) = 0. (8)

This equation, modelling the quantum harmonic oscillator, is (like Bessel’s
equation) a special case of Kummer’s or Whittaker’s equation, see [5]. We consider
it separately in order to introduce the four-element Stokes structure.

It is known that any solution u(z) of (8) is an entire function satisfying in the
whole complex plane the following estimate

lu(z)| < Meelt/2He)lzP (9)

for any € > 0 with an appropriate choice of M, . The following fact is also well
known.

Proposition 1. Given a sector S of the complex plane or of the Riemann
surface of log z with its apex at the origin and subtending an angle less than /2,
there exists a pair of solutions of (8) which can be represented as

~

ui(z) = zE_%e_%(l +0(1)), z€S, z— o0; (10)
22
ug(z) :z*E*%eT(l-l-o(l)), z€S8, z—00.

This result can be derived from the corresponding system of integral equations

similar to (6), (7), (see, for example, [4, 7]). The exponential factors z” ~3e~ 7,

»P=3e% in (10) are the so called Green-Liouville approximants for the corre-
sponding solutions as z — co. The branches of 2T —3 = (FE=3)1982 a10 chosen
so that the value of log z is real when z belongs to the positive ray of the complex
plane or of the Riemann surface of log z. We refer also to [6, Theorem 12.1], for
the matrix version of this result.

Our principal aim is to study the global behavior of the factors 1 + o(1) in
(10). Therefore, we introduce a special notation for these factors

22
ui(z) = P ~7T P (2),

€
1
-E-1

(11)

ug(z) = 2 e’T Py(2).

Definition 1. The functions Pi(z), P2(2) are said to be the phase amplitudes
of u1(z),uz(z), respectively.

It follows from (11) that the functions Pj(z), P2(z)
(i) are holomorphic on the Riemann surface of log z ,
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(ii) satisfy the asymptotic relations
Pi(z)=140(1), z€S8, z— o0;

(12)
Py(z)=1+0(), z€8, z— .

Remark 1. One should note that, although u1(2),us(z) are single valued (en-
tire) functions in the whole complex plane C, their phase-amplitudes Py(z), Py(2)
are multi-valued functions in C (for any non half-integer E). These functions
can be regarded as single-valued on the Riemann surface of logz. We are forced
to factorize the single valued functions ui(z) and ug(z) into the product (11) of
multi-valued factors because the leading terms of the asymptotic relations (10),
the functions ziE*lﬂe:Fzz/Q, are multi-valued functions (except for the case of
half integer E ).

Remark 2. The functions Pi(z), Py(z) are bounded not only in the initial
sector S, they may also be bounded in other sectors. However, as a rule, the
phase amplitude P;(z) are unbounded functions on the whole Riemann surface of
log z. It is worth noting that the boundedness of the phase amplitudes Pj(z) in
a sector does not involve the boundedness of the corresponding solutions u;(z) in
the same sector.

Let us examine the behavior of the leading term in (10), say the exponentials
eié in the z-plane. Introduce the following ray ly, in the Riemann surface of
log z:

lo={z:0<|z| < oc,argz =6} (13)
and consider the Iy, 0; = jf, for all integers j. These rays separate the sectors

2
in which the exponentials et are decaying as z — oo from the sectors in which
the same exponentials are growing as z — oc.

Definition 2. The rays ly,, 6; = jf,j € 7Z, are called the separation rays for
the equation (8).

These special rays are very important in asymptotic analysis.
Let us denote the sectors mentioned above by s(j),j € Z,

s(j):{z:0<\z|<oo,—ﬁ

4—F(j—l)i<amrgz<E—%—(j—l)g}. (14)

2 4

We will regard the four sectors
s(1)={z:0< 2| <00, —F <argz<
5(2)={2:0< 2| <00, T <argz<
s(3)={z:0<|z| <00, 3L <argz<
( ys

s(4)={z:0< 2| <00, 2 <argz<

(15)

b
Th
Th
T}
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as the initial principal sectors. These sectors together with the four principal sepa-
ration rays lp, , j = 1, 2, 3, 4, cover the whole complex plane, except z = 0.
One can also derive from Proposition 1 the following result.

Proposition 2.

(i) For each s(j), j € Z, there exists a solution w9 (z) decaying inside of s(j).
More precisely, there exist solutions u(?*~1(z2), u(?%)(2), k € Z, such that

z2
u®D(z) = 2P 3T Py (2),
1 z2 (16)
ulh)(2) = 27F2e7 Py(2),
where the functions Pj(z), j € Z, satisfy the relations
Pj(z) =1+ 0(1),z = oo, (17)

in every closed sub-sector™ of the sector s(j) .

(ii) The solution of the equation (8), bounded in the sector s(j), is essentially
unique for if v(z) is another solution of (8), bounded inside the sector s(j),
then v(z) is proportional to u¥)(z): v(z) = Cul)(2) where C is a complex
constant.

Definition 3. We will regard the solutions u'9)(2) of the equation (8) as nor-
malized solutions. The four solutions u'J )( ), 7=1,2,3,4, will be regarded as the
principal normalized solutions of the equation.

Further, the sector s(j) is the maximal sector (in general) in which the so-
lution u)(z) is bounded. The maximality means: if a sector s is wider than
the sector s(j), i.e., s D s(j), s # s(j), then the solution uU)(z) is unbounded
in s. Nevertheless, 1t is possible to obtain the precise behavior of u{/)(z) in some
extended sector S(j),s(j) C S(j). By definition, for each j the sector S(j) is
the union of the closure of s(j) and of a pair of its adjacent open sectors on the
Riemann surface of log z.

We introduce the four principal extended sectors

S(1)={z:0<|z| < o0, 3T <argz < 3 },
S5(2)={7z:0<|z| <00, —% <argz < 2L

SB)={z:0<|z| <00, T <argz <

bl

A

?
S(4)={z:0<|z| <00, 3 <argz< . }.

Note that S(j) subtends an angle three times as large as that of s(j).

*If Sis a sector: S = {z:a < argz < 8,0 < |2| < oo}, then by definition the closed
sub-sector of S is a sector S’ of the form §' = {z: o’ < argz < B,0 < |z| < oo} where
a<ad <p <8
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Proposition 3. In every closed sub-sector of the sector S(j) the phase am-
plitudes Pj(z), j € 7, satisfy the asymptotic relation

Pj(z) =1+ 0(1),z — oo. (19)

To prove this statement, consider all the pairs (ul)(z), w0tV (2)), j € Z,
of neighboring solutions. The elements of every pair are linearly independent
because of their different behaviors in the respective sectors s(j) and s(j + 1).
Therefore, for each pair (u()(z), U1 (z)), every solution of the equation can be
represented as a linear combination of u/)(z), ul9+1(2). Consider then an open
sector s with an angle less than 7/4, and assume that s contains the separation
ray lg, 0 = %(2j—1), which separate sectors s(j) and s(j+1). Due a Proposition 1
there is a pair (v1,v2) of solutions of (8) whose leading factors are equal to those
for u) and u(), respectively. We have

v (2) = auD (2) + bulitD(2),

with complex constants a, b, ¢, d.

Considering the first equation of (20) in s(j) and the second equation in s(j+1)
yields immediately b = 0,a = 1 and ¢ = 0,d = 1, respectively. This argument
and a similar one for s(j — 1) and s(j) finish the proof.

It is important to note the following property of the extended sectors. In
contrast to the sectors s(j), the sectors S(j) overlap. In what follows later, this
property allows us to relate the asymptotic expansions of the same solution in
distant sectors. But first we show a simple example of how this property works.

As follows from the above proof, four relations

(21)

are valid with a,b,c,d, f, g, h,k complex constants. The following statement is
true.

Proposition 4. Assume that the solution uY)(z), j € 7Z, is defined by (16),
(17). Then the relations (21) hold with

b=d=g=Fk=1. (22)
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Indeed, for each relation of (21), there is a sector where two of the functions
uU) are growing, with the same normalization (16)—(17), and the third one is
decaying as z — oo within this sector. The equalities of the form (22) are related
not only to this specific case (of Weber’s equation) but can be extended to more
general matrix differential equations. Thus, we essentially rely on the fact that
the relations Pj(z) = 1+ o(1),z — oo are valid not only inside the sectors s(j),
but also inside the extended sectors S(j).

To be more precise, let us examine the relation u{)(z) = au® (z) + bul® (2),
the first of the relations (21), in the sector s(2). As follows from (16) and (17)

22
for j = 2, inside this sector u(?(z) = z_E_%eT(l + o(1)) as z — oo. Thus,
u®(z) = o(1) as z = co. Two other solutions u(!)(z), u(3)(z) are exponentially
growing and have the same asymptotic behavior inside s(2): u(V(z), u®(2) =

zEféefﬁ(l + 0(1)) as z — oo, which yields immediately b = 1. We emphasize
that for u(")(z) the sector s(2) is considered part of the sector S(1), while for
u(® (2) the same sector s(2) is considered part of the sector S(3).

Equation (8), as an equation with single valued coefficients, is invariant with
respect to the transformation z — ze=2" hence the function 4 (ze=%"7), j € 7Z,
also is a solution of equation (8). Clearly, solutions u(! (ze=%7), u(®) (ze~%") are
bounded in sectors s(5), s(6), respectively, introduced in (15). Moreover, as it
follows from (16), (17) and (19), these solutions satisfy the following estimates
when z — oo and z € S(5), S(6), respectively:

[

1 z
_56_27(1 + 0(1))’ (23)
u® (ze=2im) = e?iw(E-I—%)Z—E—%e%(l +o(1)).

u) (ze=2im) = o~ 2in(E—3) ,E

It follows immediately from Proposition 2,(ii) that

u®) () = eQm’(E—%)u(l) (zeqm)’ .
u®)(2) = ¢=2mi(E+3)y2) (o 2mi). (24)
The matrix version of (24) can be found, for example, in [6].
Substituting the right-hand sides of (24) for u(®)(2), u(®)(z), respectively, into
(21) using (22) from Proposition 4, and renaming a,c, f,h as T1,T5,T5,Ty we
rewrite (21) as
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Finally, replacing the functions u()(2),7 =1, 2, 3, 4, in (25) by their phase-
amplitudes Pj(z), defined by (16), we obtain

Pi(2) = P3(2) + Ty 2 2Ee?” Py(2),

Py(2) = Py(2) + T 2*Pe -z Ps(z2), (26)
P3(z) = Pi(ze2™) + T3 2= 2E¢?” Py(2),

Py(2) = Py(ze 2™ + Ty 22EPe 2" Py (ze 2m).

Definition 4. The coefficients Ty = Tx(E) in (25) and (26) are called the
connection coefficients for the equation (8) and for the normalized principal solu-

tions (16).

Eliminating u®) (z) ,u® (2) from the relations (25) or P3(z), Py(z) from the
relations (26) obviously yields relations which can be regarded (similarly to (4),
(5)) as the monodromic relations for the first pair of principal solutions or their
phase amplitudes, respectively.

The relations (26) provide the basis for the four-element Stokes structure.

Definition 5. A set of functions p1(z), p2(2), p3(z), pa(z)

(1) analytic on the Riemann surface of log z satisfying

pj(2)] < AeBl,

z—o00, A, B>0,j7=1,2 3,4,

(ii) bounded in closed sub-sectors of S(j)

S
S(2

1

S(4

respectively, and

(1)={2:0< 2| < o0, —2F
2)={2:0<|z| <00, —Z

SB)={2:0<lz] <oo, F -2 <argy< T 252
()Z{z:0<|z|<oo, %TW

—3m_ WBY o argy < 3T

(27)

(i) satisfying the monodromic relations with connection coefficients Ty,

T2; T3; T4

z

3

1

3

b3z

palZ

(2) = ps(
2(2) = pa(z
(2) = pa(
(2) = pa(
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form a four-element Stokes structure G(4) generated by 27 +Fz

S(4) = 6{pi(2), p2(2), p3(2), pa(z)}-

Thus, using (26), we have shown that the phase amplitudes Pj(z) of the
principal solutions () (z) in (16) form a four-element Stokes structure Ggy(4)
with a = 1,8 = 0,7 = —2F and complex coefficients 11, To, T3, T4. These
coefficients will be determined later in a subsequent paper using our method
which follows.

Remark 3. For the sake of uniformity one could rewrite the relations (3) as

p1(2) = p1(ze™2™) + T 2P €% po(2),

. (29)
p2(2) = pa(ze™2™) + ThzPe%pi(ze

—2me )’
which better agrees with (28). However, we prefer to work with relations (3) or
(4) and (5) presented in their original Hankel form, see, for example, relations

(15.6) in [6], to emphasize also the peculiarity of the two-element Stokes structure.

Lemma 1. Due to the additional symmetry of Weber’s equation (the coeffi-
cients of (8) are even functions), its four-element Stokes structure can be reduced
to a two-element Stokes structure.

Equation (8) is also invariant with respect to the transformation z — ze™*",
hence the functions u() (ze~*"), u( (ze ") are also solutions of (8).

Using a technique similar to that shown above one can prove that

u) (ze ™) = ¢~m(F-3)y®) (2)

) 30
u(2) (ze_ﬂ—i) = eﬂZ(E—i—%)'u,(‘L) (z) ( )
or
(3) _ mi(E-1), (1) (i
u'®)(2) 67 . 2lu (ze )? (31)
u(4) (z) —=e WZ(E+2)u(2) (ze_ﬂ—z)_
Eliminating u®) (z),u® (2) from the relations (25), yields
uD(z) = e”i(E_%)u(l)(zefﬂi) + Ty u? (2),
ne) (2) = e TiE+3),,(2) (ze~™) + Ty eTI(E—%),, (1) (ze~),
e”(E_%)u(l)(ze_“) _ €2wi(E—§)u(1)(ze—2ni) T Ty e THE+3),,(2) (ze~7),
e Ti(E+3),,(2) (ze~™) = o 2mi(B+3),,(2) (ze~270) + e27ri(Ef%)T4 u(l)(ze—Zm').
(32)
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which after the change of variable ze™™ — z in the last pair of relations of (32)
obviously yields

uV(z) = e“i(E*%)u(l)(ze_”) +T1u® (2),
— o Ti(E+3),,(2) (ze~™) + Ty oTi(E— )u(l)(ze—m')’

_ em’(E—%)u(l)(ze—ﬂi) 4 Ty e~ 27iEy(2) (2),

(M

It can be seen that with an appropriate choice of T3, Ty the second pair of
relations (33) is identical to the first pair of relations (33). This gives

T3 — 627riET1 ,

Ty = e 2™METY, (34
Thus, the four elements Stokes structure for Weber’s equations can be reduced
to the two-element Stokes structure for the reduced Weber’s equations, which has
been derived in [2].
Of course, one could also express u() (2),7 =1, 2, 3, 4, in terms of the Weber
functions DE_% (2),

D_,_ 1 (2). Comparing (16) and (17) with formulae (9) in [2] and using the Propo-
sition II(ii) yields

u(2) = 275+3D, 1 (V22),

u® (5) = 255 FPD_, (VB ?) )
and similar formulae for u® (2) ,u(® (z) from the above.

It is worth emphasizing again that for Weber’s equation, due to (35), we could
also obtain the Stokes structure & (4) (with explicit connection coefficients) using
(17), the integral representations (13), (14) in [2] and the monodromic property
of the Gauss Hypergeometric function which we have used already in [2] for the
incomplete Gamma and Bessel’s equations . However, we will omit this possibility
in our present investigation. Moreover, it is better in this context to ignore the
relations similar to (35) and the relation (14) in [2].

The above analysis is applicable to a wide class of differential equations. For
example, the quartic anharmonic oscillator equation

d*u

@—(2+ez4—2E)u:O (36)
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with a complex coupling parameter 0 < |¢| < 1 yields six solutions, analytic in
the whole complex plane, with exponential growth of order 3:

(37)

where Pj(z) =14 0(1), z = oo in closed sub-sectors of

{z:0<|z\<oo,—%+(j—1)%<argz<%—F(j—l)g

Using the method above, this similarly imply the six relations

}, j=1,2,....6.

(38)

ve(s i),

whence the six-element Stokes structure Gg(6) generated by e’
62((6) = 6{P1(Z), PQ(Z)a P3(z)a P4(Z), P5(Z), PG(Z)}

Let us ignore the differential equations for the time being and consider the
Stokes structure as an independent object. One could regard the Stokes structure
as a system of linear equations in a certain class of analytic functions. This system
of equations is homogeneous and it always possesses zero solutions. A question
arises immediately:

Are there non-trivial functions that are non-vanishing and that satisfy this
system of equations 7
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For the two-element Stokes structure &(2) the corresponding system of linear
equations has been defined by (4) and (5). For the special case @ = 2i,3 = 0
and 17 =Ty = T, the phase amplitudes P;, P» of the Hankel functions H,Sl), H,SQ)
clearly satisfy the system of equations (4) and (5) if the parameter v is defined
by the equation cosvm = 212

The following more general statement is true.

Theorem 1. Consider the Stokes structures &(2), &(4), &(6) with corre-
sponding system of linear equations defined by (4) and (5), (28) and (38), respec-
tively. Then there exists a non-trivial solution of these equations in the respective
class of analytic functions.

This theorem with subsequent generalizations will be discussed in the next
papers in this series. In particular, for the special case of &(2), we will consider
the question:

Are there solutions of (4) and (5) in addition to the ones above and if such
solutions do exist what are they?

Similar questions arise in more general matrix cases.

In our subsequent papers we will present a unified Fourier transform method
by applying Fourier transforms to the elements of the Stokes structure &. Given
G we will properly define Fourier (Borel)-like transforms and study their analytic
properties, extract the formal power series associated with the elements of & and
relate them to each other and to the elements of &.
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