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obtained. New exact inequalities of Bernstein type for trigonometric polino-
mials and splines are proved.
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1. Introduction

Let G be the real line R or the unite circle T, which is realized as the interval
[, 7] with coincident endpoints, or a finite interval [a,b]. We shall consider
the spaces L,(G),0 < p < 0o, of all measurable functions = : G — R such that
||$||L,,(G) < 00, where

1/p
lallz, e = [ 1o )P
G
if 0 <p<ooand
2l 1o () = sup_vrai|z (¢)].
teG
For z € Ly(G) we set Ey(z)r,(q) = infeer |7 — c||p, (@) We will write || - ||,

instead of [|-|| (1), Eo(-)p instead of Eo(-)r,(t) and Ly instead of Ly(T).
For a differentiable function z € L,(R) or z € L, we set

lz[|lp == sup {Eo(2) 1,0 = 2'(t) 0 Vi€ (a,b), a,bER}. (1.1)
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Inequalities of Kolmogorov type

For r € N, p > 0 denote by L;(G) the space of all functions z € Ly(G) such
that 2"~ (z(®) := 1) is locally absolutely continuous and z(") € L,(G). We set
W (G) = {z € L5 (G) : =1 (c) < 1}. Let ¢q () = sgnsint, t € R, and let
©r(t) be its r** 27-periodic integral the mean value of which is equal to zero.

Exact inequalities of Kolmogorov type

l-a
o)

[« < c ey (1.2)

for 2m-periodic functions z € LY , where k,r € N, k < r;q,p,s € [1,00];x € (0,1)
are of great importance for many problems of analysis. It is well known [1] that
inequality (1.2) holds for any = € L, if and only if o < ay, where

o k r—k—s'+q!
Q¢ = 1IN 1—;, r— s T .
Note that the inequalities of type (1.2) with the maximal exponent @ = «,, are
of the most interest.

We will discuss in this paper the inequalities of the form

l-a
£

|« < cnialis

(1.3)

for 2m-periodic functions z € L', where k,r € N, k < r;q € [1,00];p € (0, 00];
a € (0,1) and the value |||z|||, is defined by (1.1). It is easy to see that the
maximal exponent « in the inequality of the form (1.3) is @ = (r — k)/(r + 1/p).
In this paper some new exact inequalities of form (1.3) for functions z € L7 and
for any ¢ € [1,00], p € (0,00] are obtained, where a = (r — k)/(r + 1/p) (see
Theorem 3). By means of Theorem 3 a new exact inequality of Bernstein’s type
for trigonometric polynomials 7 of order < n and for any p € (0,00],q € [1, <]
is proved (Theorem 4). An analog of Theorem 4 for polynomial splines also is
obtained (Theorem 5).

For r € R, A > 0 we set @y, (t) :== A "¢, (At + a,), where a, is chosen such
that the spline ¢y , (¢) increases on [—7/2X, 7/2)]. We need a modification of the
Kolmogorov’s comparision theorem [2].

Theorem 1. (see [3]). Let r € N, z € W (R) and X\ is chosen satisfying
condition

2llloo = ll@arlloo-

Let then [a,b] be an interval such that z'(t) # 0 Vt € (a,b); z'(a) = 2'(b) = 0.
If points t € [a,b] and y € [—7/2\,7/2)] are chosen such that

z(b) — ()| = loar(m/2X) — oan(y)]
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or such that
1z(t) — z(a)| = |ear(y) — oar(=7/2X)];
then
|z’ ()] < 1o ().

Repeating the proof of Ligun’s inequality [4], but applying Theorem 1 instead
of Kolmogorov’s comparision theorem, we obtain the following amplification of
Ligun’s inequality.

Theorem 2. Letk,r € N, k <. Then for any function z € L] the inequality

o] < L2 By ot

— 1—k
Nl L5/

holds. The inequality becomes equality for functions x(t) = aw, (nt +b), a, b € R,
n € N.

Remark. Itisobvious that |||z||| < |7z, (r)- Moreover, for any M > 0
there exists a function z € L% (R) such that ”$|||||L|°|‘|’(R) > M.

2. Some new exact inequalities of Kolmogorov type

Theorem 3. Let r,k € N; k < ;9 € [1,0], p € (0,00]. Then for any
function ¢ € L7 the following inequalities hold:

k+1/p
H-T(k)H ||(107" k” ‘H |||7‘+1/p r+1/p (21)
Il rHlm“’ >
and
[lor | i Fi/5
][]0 < ﬁ“@”bwp o) 0:1 7. (2.2)
erlllp™""

The inequalities (2.1) and (2.2) are the best possible and become equalities
for functions z(t) = ap,(nt + b); a,b € R, n € N.

Proof Fixany z € L . Taking into account the homogeneity of the
inequalities (2.1) and (2.2), we can assume that

27| oo = 1. (2.3)
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Inequalities of Kolmogorov type

Let us choose A satisfying condition

ll2[lloo = lloarlloo- (2.4)

Let us prove that
1
lllllp > 577 Eo(Prr)r,i02n/x)- (2.5)

Since z is the periodic function, there exists the interval [a, b] such that z'(t) #
0Vt € (a,b) and
12[lloc = Eo() Loo [a]- (2.6)

Without loss of generality we assume that the function z increases on [a, b]. De-
note by ¢, = ¢,(z) the constant of the best L,— approximation of the contraction
of the function z on the interval [a,b], i.e., such constant that Eo(z)r, a5 =
|lz(t) — cp(z) ||Lp[a’b] . It is clear that z(t) — cp() has an zero on [a,b]. Denote this
zero by z. So

z(z) = cp. (2.7

Let us choose u € [—%, %] such that

o (35) = oarw) = 2(6) —a(2). (28)

By (2.4) and (2.6)

™

oxnr(u) — oxgr (——

2)\) = z(z) — z(a). (2.9)

It follows from (2.8) and (2.9) that for any ¢ € [z,b] (or ¢t € [a,z]) there exists
y € [u, %] (or y € [~%,u]) such that

™
e (35) = Prr@) = 2(b) () (2.10)
or .
ore(®) = s (—35) = #(t) = a(a). (2.11)
By Theorem 1
()] < A )], (212)
moreover,
™ ™
—z> — — —a> —. 2.1
b 225y U 2 a_u+2)\ (2.13)

It follows from (2.8)—(2.12) that

™

z(b—s) —x(z) > oryr (ﬁ — s) —prar(u) >0, se [O, % — u] (2.14)
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and

= tu]. (219)

z(a+ ) —z(z) < orpr ( — +s) —par(u) <0, se [O, X

2
Using (2.7) and (2.13)-(2.15), we have

el > llo—cpll, oy = o=z} g0y = / () |Pds+/ o) ~a(s)Pds

b—z

:/|z(b—s)—$(z)|pds+ / 5(2) — (a + 5)Pds
0 0

ﬁ—u %—Fu

T\ = P (__ _ P
[ torne (55— 5) —onrPas+ [ foas (<55 +5) —enstwpas
0 0

3%
:/|(P>\,1'() o (u)|Pds + / loar (8) — oar(u)Pds
u

>“3|*

1 1
/ [oar (5= orr(@)Pds = 5 [ lionr (5) = onrw)Pds > 3B (02 )], s

_T
A

y|"

The inequality (2.5) is proved.
On the other hand, it follows from (2.4) and (2.3) by Theorem 2 that

1z® g < A7 lop_llg- (2.16)

Let us prove (2.1). Set a = Taking into account the evident equality

+1/p
Eo(0xs) L0003 = X" VPEo (@) llerlllp = 27YPEg (01 )p,

and applying (2.16) and (2.5), we obtain

1=®l, o XCPlelly X leeklly llerills
llallly = 272 Boloar)z pozmm]” 2722710 Bolpn)]”  [llerllly

The inequality (2.1) follows from the last inequality in view of (2.3). In a similar
manner one can obtain (2.2) using (2.3)—(2.5). The exactness of the inequalities
(2.1) and (2.2) is evident. Theorem is proved.
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Remarks. 1. The inequality (2.2) is modification of the inequality

’r+1/p
’

Eo(2)oo < H‘Pr”oor Eo(ﬂv);m 21
Eo(pr)p " >

that has been obtained in [5].
2. In addition to the inequality (2.1) the following inequality holds:

(k) ||(101“—k|| ﬁ (r) ’:i}g
o] < Lt g o e

Eo(gr)p"” ”

Its proof is analogous to the proof of the inequality (2.1). However the exponent

a=(r—k)/(r+1/p)in (2.17) is not the greatest in the case ¢ < oo or p < co. On

the other hand, the same exponent « in the inequality (2.1) is the best possible .
The inequality (2.1) in the case ¢ = oo is the modification of the inequality

k+1/
Hx(k)H < ||90T k”oo E ( )’I‘+1/p CE(T) 7'+1/1; ’
o0 EO( )r+1/p 00

that has been obtained in [6].

3. Some new exact inequalities of Bernstein type

Denote by 7, the space of all trigonometric polynomials of order < n.

Theorem 4. Let k,n € N; q € [1,00], p € (0,00]. Then for any polynomial
T € T, the inequality holds:

COS
17, < giise . 05Ol (3.1)

[ cos ()]l

The inequality (3.1) is the best possible on T, and becomes equality for poly-
nomials 7(t) = acos(nt +b), a,b € R, n € N.

Proof. Letuschooser € N, r >k . Applying Theorem 3, we have

el
[, < T ieis |-
Tl

r) -«

; (3-2)

where a = r:_z’;p Estimating HT(T || in (3.2) with the help of Bernstein’s in-
equality (see for example [7, p. 20]) ||7%) || < n"||7]|c0, We obtain

= i i
|71, < T 1l o el (3.3)
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Note that

I1cos()l[lp = 277 Bo(cos())p;  Eolcos())p = || cos(-)[,

(last equality is evident in the case p > 1; as for the case p < 1 see [8]). Hence,
letting r — oo in (3.3) and taking into account that

r—k r 1 1
l—a)=r(1- = k+—-) =2 k+-
r1—e) r( T+1/p) 7"+1/p( +p> +p

4 4
llerllp = —Ileos()llps  [llerllly = Il cos()]l]p,

and

we get (3.1). The exactness of the inequality (3.1) is evident. Theorem is proved.
The inequality (3.1) in the case ¢ = oo is the modification of the inequality

nktl/p

Ry <«
T 00
Il < eosO,

171l

that has been obtained in [6].

The inequality (3.1) in the case ¢ = p = oo is the amplification of Bern-
stein’s inequality (see for example [7, p. 20]). In the case ¢ < oo,p = oo it is
the amplification of Taikov’s inequality [9].

Let Sy, n,m € N be the set of all 2m-periodic polynomial splines of the order
r defect 1 with knots at the points kw/n, n € N, k € Z.

In the same manner one can prove the following analog of Theorem 4.

Theorem 5. Let n,k,7 € N, k < r; g € [1,00], p € (0,00]. Then for any
spline s € Sy, » the inequality holds:

sl <5 M tlay gy (3.4)
I[lr[llp
The inequality (3.4) is the best possible on Sy, and becomes equality for
splines s(t) = apy(nt),a € R, n € N.
The inequality (3.4) in the case ¢ = oo is the modification of the inequality

W) < it ler—slloo
s <n" T - = Fy(s)y,
|| ||OO EO(SO'/')p ( )p
that has been obtained in [6].
The inequality (3.4) in the case ¢ = p = oo is the amplification of Tikhomirov’s
inequality [10]. In the case ¢ < oo,p = oo it is the amplification of Ligun’s
inequality [11].
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