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We show how some notions and results of measurable dynamics can be
applied to the theory of Cantor minimal systems. Motivated by measurable
dynamics, we study the weak and uniform topologies on full groups and
their normalizers. The article develops the approach and ideas of [BK].

Introduction

In this note, we are going to consider an interplay between topological and
measurable dynamics. In the settings of topological dynamics, one deals with
a topological space Q (it is usually a compact metric space) and a group G
acting on €2 by homeomorphisms. In measurable dynamics, the main object is
(X, B, u, T') where (X, B, u1) is a standard measure space and I is a countable group
of measure-preserving or non-singular automorphisms. The core of both theories
is the case of Z-actions when dynamics is generated by a single transformation.

It is well known, and supported by many results, that topological and mea-
surable dynamics are, strictly speaking, the completely different theories. One
of the reason for this difference is that, from standpoint of topological dynamics,
actions of G on €2 would be studied without throwing anything away since it
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may change the topology and dynamics on €2 crucially. In measurable dynamics,
sets which are null with respect to a I'-invariant (or quasi-invariant) measure are
regarded as negligible. Moreover, it does not matter what underlying space is
considered because all standard measure spaces are isomorphic. For  the sit-
uation is different: we cannot ignore the topological structure of 2. But there
is a class of topological spaces where we do can it. If € is a Cantor set, then
its topological properties do not depend on a particular representative since all
Cantor sets are homeomorphic. This fact and the fact that there exists a count-
able family of sets (namely, clopen sets) generating all Borel o-algebra make the
theory of Cantor dynamical systems close to measurable dynamics. This point of
view can be supported by remarkable results on complete classification of Cantor
minimal systems up to orbit equivalence [GPS1, GPS2, GW]| as it was done ear-
lier for ergodic automorphisms. Moreover, it turns out that such notions as full
groups, normalizers, module play the roles that are similar to those in measurable
dynamics.

In the first section, we consider some concepts of measurable dynamics, related
to orbit equivalence, and point out their counterparts in the context of Cantor
minimal systems. Because this section is written as a brief survey, we are not
going to give all details, a part of obvious definitions and facts will be left to the
reader. Section 2 is devoted to the study of normalizers of full groups for Cantor
systems. We define a topology on the normalizer of a full group that converts
the normalizer into a complete (Polish) space. It is shown that the mod map is a
continuous group homomorphism.

1. Full groups in measurable and topological dynamics

1. Full groups. We begin with settling our notations. Throughout the
paper, we will denote by
e (X,B,u) a standard measure space, i.e., (X,B) is a standard Borel space
and 4 is a non-atomic measure on (X, B);

Aut(X, B, i) the group of all non-singular automorphisms;

I' a countable subgroup of Aut(X, B, u) (it will be called a group of auto-
morphisms);

Q a Cantor set;

e Homeo(Q2) the group of all homeomorphisms of ;

G a countable subgroup of Homeo(f).
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We will consider only countable ergodic groups of automorphisms I of a stan-
dard measure space and countable minimal groups of homeomorphisms G of a
Cantor set. The latter, as a rule, will be generated by a single homeomorphism.
If a statement (or definition) can be formulated for automorphisms and homeo-
morphisms simultaneously, then we will refer to them as transformations.

Given a standard measure space (X, B, 4, '), define the I'-orbit of z € X as
I'(z) = {yz : v € T'}. Similarly, for a Cantor minimal (C.m.) system (£, G),
G(w) = {gw : g € G} denotes the G-orbit of w € . Let

[]={R € Aut(X,B,u) : Rt €'z, a.e. z € X}.

Then [I'] is a subgroup in Aut(X, B, i) that is called the full group generated by
[ IfT'=(T™:n € Z), then the full group of I' is denoted by [T7].

In the context of C. m. systems, one similarly defines the full group [G] as
a subgroup in Homeo(2) that preserves every G-orbit in Q. In other words, if
R € [G], then € can be partitioned into the closed sets Ey(R) = {w € Q: R(w) =
g(w)} (some of them may be empty) such that {g(E4(R)) : ¢g € G} is also a
partition of €. It is noteworthy to remark that for connected topological spaces
the notion of full group becomes meaningless because [G] must coincide with G.

Consider also a subset [[G]] of [G] that is formed by all homeomorphisms
R € [G] such that all sets Eg(R), g € G, are clopen. It is easily seen that [[G]] is
a countable subgroup in [G]. It is called the topological full group.

Definition 1.1. Let T'; C Aut(X;, Bi, pi), @ = 1,2. Then 'y and Ty are orbit
equivalent if there exists a measurable one-to-one map ¢ : X1 — Xo such that
¢(T17) = Ta(pz) a.e. € X1 and o Lo pug ~ uy.

It is clear that the definition of orbit equivalence of two C.m. systems (1, G1)
and (Q9,G2) can be given by analogy with the following obviuos alternation: ¢
must be a homeomorphism from ©; onto Q9 and the relation p(G1z) = Ga2(pzx)
must hold everywhere.

A group of transformations (either of a measure space or a Cantor set) is
called approzimately finite if it is orbit equivalent to a single transformation.

The following statement gives a nontrivial connection between orbit equiva-
lence and full groups. We are not going to give the complete rigorous form for
this theorem. The reader can easily supplement it (see, e.g. [HO, KW]).

Theorem 1.2. Two groups of transformations are orbit equivalent if and only
if their full groups are algebraically isomorphic.

This theorem was mostly proven by Dye and Krieger for automorphisms of a
measure space and by Giordano, Putnam, and Skau for C.m. systems [GPS2].
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To every full group of transformations one can associate its normalizer. By
definition, the normalizer N[I'| (or N[G]) is formed by all transformations T
from Aut(X,B,u) (or from Homeo(f?)) that commute with the full group, that
is T[T]T~! =[] (resp. T[GIT~! = [G)).

2. Weak and uniform topologies. The uniform metric d is defined on
Aut(X,B,p) by d(S,T) = p({z € X : Sz # Tz} U{z € X : S7lx £ T 'z}).
It turns (Aut(X, B, u),d) into a complete nonseparable metric space. Every full
group is closed in the uniform topology d, generated by d. Moreover, ([['],d,)
becomes a Polish space. The d,-convergence of (T},) to T means that the measure
of the set where T,, differs from T goes to zero.

The weak topology 6, on Aut(X, B, ) can be defined by the metric

6(8,T) = Z 27 u(S(E;) A T(E;)),

where (E;) is a countable family of subsets generating B. Equivalently, d,, can be
induced from the unitary group of L?(X, B, 1) equipped with the strong operator
topology. Aut(X, B, u), endowed with d,,, becomes a Polish space. In contrast to
the uniform topology, full groups are not closed in the weak topology. A sequence
(T,,) converges to T if for every measurable A, u(T,A A TA) — 0. More facts
about these topologies can be found in [Hal, R].

It is natural to try to find out what topologies are analogous to the uniform and
weak topologies on Homeo(f2) for C.m. systems. Saying about the topological
properties of full groups, we should restrict ourself by the case of approximately
finite groups; full groups for more general transformation groups have not been
investigated yet. In [BK] we considered the most known and studied the sup-
topology T on Homeo(S2) defined by the metric

p(T,S) = sup d(T (w), S(w)) + sup AT~ w), 5 Hw))

as a topological version of the weak topology (later on we will see more reasons to
call the sup-topology as weak one). Then (Homeo(f2), 7,) is a complete separable
metric space. If (T},) converges to T in 7,,, then for every clopen F C Q, T,,(F) =
T(F) for all sufficiently large n. It was remarked in [GPS2] that full groups are not
closed in the weak topology. Moreover, if we take the closure of the topological
full group [[T]] in 74, then it, in general, does not contain [T'] and is not contained
in [T] as well (see [BK] for details).

We follow [BK] where a topological analogue of the uniform topology was
introduced. The definition is motivated by the measurable case. It can be done
even in the context of one-to-one Borel maps. Let now {2 be a compact metric
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space and denote by Bor(£2) the set (group) of all one-to-one Borel maps of 2
onto itself. Let M;(€) be the set of all Borel probability measures on .

Definition 1.3. The uniform topology 7, on Bor(Q) is defined by the family
U = {U(T;p1,--. ,pp;€)} of open neighborhoods (the base of topology): given
>0, p1,... ,un € M1(R), and T € Bor(Q2), set

U(T;p1,--- pn;e) ={S € Bor(Q) : pi(E(S,T)) <e, i =1,...,n},
where E(S,T) ={w € N:S(w) #T(w)}U{w e Q: S (w) # T Hw)}.

It is shown in [BK] that (Bor(2), 7,) becomes a nonseparable complete topo-
logical group and Homeo(2) C Bor(f2) is not closed with respect to 7,. We
consider the relative topology on Homeo(f2) denoted again by 7,. A sequence
(Ty) is Ty-converging to S € Bor(2) if and only if for every w € Q there exists
n(w) € N such that T, (w) = S(w) and T}, (w) = S !(w) for all n > n(w). Then
the 7,-closure of [T'] in Homeo(f2) coincides with [T']. If we take the 7,-closure
of the topological full group [[T]], then we get the full group [T]. These facts
show that the uniform topology 7, has natural properties related to full groups
(in contrast to the weak topology 7).

Recall that, in measurable dynamics, weak convergence means convergence on
every measurable set. For homeomorphisms of a Cantor set, a weakly converging
sequence must eventually stabilize on every clopen set. This fact is a motivation
for the following definition. We introduce one more topology (call it 7 for a
moment) on Homeo(2) by defining its base. Given clopen sets Fi,... , F,, set

W(T; Fi,...,F,) ={S € Homeo(Q) : S(F;) =T(F;), i=1,... ,n}.

The next proposition will justify the name of weak topology for 7.

Proposition 1.4. 7 is equivalent to 1,, on Homeo((2).

Proof It suffices to consider the two topologies at the identity map I
only. Fix some ¢ > 0 and let P = (F; : i = 1,... ,n) be a partition of  into
clopen sets such that diam(F;) <e¢, i =1,... ,n. If S € W(I; Fy,... , F,), then
S(F;) = F; and therefore

sup d(Sw,w) + sup d(S tw,w) < 2.
wesl wenN

This proves that W (I; Fy,... ,F,) C Bo:(I) where By.(I) is the ball centered at
I of the radius 2¢ in metric p.
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Conversely, let a neighborhood W(I; Fy,... , F,) be given. Then the sets F;
and Q\ F; (1 = 1,... ,n) generate the clopen partition P = (E; : j € A). Take
some positive € < g9 where

g9 = min{min(dist(Ey, E;) : k,j € A, k # j), min(diam(E;) : j € A)}.

Then for any S € B.(I) we have that S(E;) = E;, j € A, i.e., each atom of P
is fixed. Therefore S(F;) = F;, i = 1,... ,n, because each F; is a union of some
E;’s. This proves that S € W(I; Fy,... , Fy). [ |

The problem of investigation of topological and algebraic structures of full
groups has been rather popular in measurable dynamics (see, e.g. [D, Hal, R]).
As far as we know, almost nothing is clarified about those properties of full groups
for C.m. systems with respect to the two topologies. For example, it is unknown
if full groups are contractible, if they have closed normal subgroups etc.

3. Saturated Cantor minimal systems. Let (©2,7") be a C.m. system.
We say that two clopen sets A and B are [[T]]-equivalent (resp. [T]-equivalent)
if there exists v € [[T]] (resp. v € [T]) such that y(4) = B. It was proved in
[GW] that if u(A) = p(B) for every T-invariant probability measure u, then A
and B are [T]-equivalent. It was proved in [GPS2] that two clopen sets A and B
are [[T']]-equivalent if and only if x4(z) — xp(z) is a coboundary.

The following definition was given in [BK]. Let M;(T) denote the set of all
T-invariant measures.

Definition 1.5. We say that a C.m. system (Q,T) is saturated if any two
clopen sets A and B from X such that p(A) = pu(B), p € M(T), are [[T]]-
equivalent.

It turns out that this property of C.m. systems has several equivalent for-
mulations [BK]|. We mention here only one: (2,7’ is saturated if and only if the
closure of [[T]] in the weak topology 7, contains [T7].

In measurable dynamics every ergodic automorphism is automatically mod 0
saturated. The following assertion, which is not hard to deduce from the results
proved in [GW] and [BK], can be treated as a topological variant of the above
statement.

Theorem 1.6. For any C.m. system (Q,T) there erists a minimal homeo-
morphism S € [T] orbit equivalent to T' and such that the C.m. system (R, S) is
saturated.
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2. Normalizer of Cantor minimal systems

Let (22, G) be a C.m. system and let N[G] denote the normalizer of [G]. Recall
that R € N|[G] if and only if R(Gw) = G(Rw) for all w € Q. We denote by M;(G)
the set of G-invariant probability measures on . Let Homeo(M;(G)) = {p €
Homeo(Q2) : p(M1(G)) = M1(G)}. Tt is obvious that N[G] C Homeo(M;(G)).

We introduce a new topology on N|[G]. Next definition is again motivated by
measurable dynamics.

Definition 2.1. Given R € N[G|, p1,... ,pr € M1(Q2), and € > 0, define

U(Ralula ,,Ltk;c‘:): {PEN[G]p(R7P)<63 /‘i(E(R,YR_la-P’YP_l))<6a
i=1,...,k, v€G}.

Then the sets {U(R; u1,... ,pr;€)} determine a base of a topology (call it X) on
N[G].

By definition, a sequence (R;) is A-converging to R if: (1) p(R,,R) — 0
and (2) Vg € G, RygR;! — RgR™! in 7,. It is equivalent to the following two
conditions:

e (Vclopen F C Q) (In(F) € N) such that R,(F) = R(F) if n > n(F) (see
Proposition 1.4);

o (Vwe Q) (Vg € G) (In(w,g) € N) such that for all n > n(w,g) one has
RngR,'(w) = RgR '(w) or, equivalently, (R™'Rn)g(w) = g(R 'Ry)(w),
i.e., R"'R,, eventually commutes with every g € G.

Theorem 2.2. (N[G], ) is a complete topological group. If G is approzi-
mately finite, then (N[G], \) is separable.

We first prove a simple lemma that will be used below. It was shown in [BK]
that the weak and uniform topologies are not comparable. Nevertheless, one can
prove

Lemma 2.3. Suppose a sequence (Ty,) of homeomorphisms of @ converges to
a homeomorphism T in the weak topology and simultaneously (T,) converges to
a homeomorphism T' in the uniform topology. Then T = T".

Proof. We have that for any given € > 0 and wy € (2, there exists
sufficiently large n such that

sup d(To(w), T()) <& and  Ta(wo) = T'(wo) (+)
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If we assumed that T' # T", then we would find an open subset V' and some r > 0
such that d(T(w),T"(w)) > r for all w € V. It will lead to a contradiction with
(%) if we take wp from V. |

Proof of Theorem 22. We will apply the idea elaborated in
[HOJ. Consider the space Y = Homeo(Q2) X [[,c[G] endowed with the topology
Tw X[ ] geG Tu- Then'Y becomes a complete topological space. Defines: N [G] =Y
by #(R) = (R, (RgR™")4ec) (recall that G is countable). It is clear that 2 is an
injective map and, moreover, 7 is a homeomorphism from (N[G], A) onto (N[G])
endowed with the relative topology. To prove the first statement, we should
verify only that +(N[G]) is closed in Y. Let 2(R,,) be a convergent sequence. Since
(Homeo(2), Ty) is a complete space, then R, must converge to a homeomorphism
T in the weak topology. Obviously, for every g € G, p(R,gR,*,TgT~!) — 0 as
n — oo. It is clear that every R,gR,' belongs to [G] and (R,gR,') converges
in 7, to a homeomorphism S(g) from [G]. It follows from the definition of the
topology on Y along with the assumption that #(R,) is convergent in Y. By
Lemma 2.3, S(g) = TgT~'. It proves that 1(R,) — (T, (TgT")4ec) = +(T), as
n — oo, and T € N[G].

To see that the second statement holds, it suffices to note that [G] is separable
in the uniform topology when G is approximately finite. Indeed, [[G]] is dense in
[G] [BK]. ]

For approximately finite groups of automorphisms the mod map from N[I']
onto the centralizer of associated flow plays a very important role in many prob-
lems of measurable dynamical systems [BG1, BG2, H]. In [GPS2], a topological
counterpart of the mod map has been offered. Let (€2, G) be a C.m. system and
let C(£2,Z) denote the countable group of Z-valued continuous functions. Define
Z(G)={f e CQZ): [fdu =0, Vu € Mi(G)}. Then, we will denote by f
the image of f € C(f2,Z) in the qoutient group C(2,Z)/Z(G). Given R € N[G]
and a clopen set F, define

mod(R)(XF) = Xr(F)- (%)

The mod map is well defined because R(Mi1(G)) = Mi(G) and therefore
R(Z(G)) = Z(G). Since every function from C(£2,Z) is a finite linear combination
of some characteristic functions, mod(R) can be extended to an automorphism
of C(Q,Z)/Z(G). Note that this group automorphism preserves the cone of posi-
tive functions, therefore it can be considered as an ordered group automorphism.
Thus, we get a group homomorphism

mod(R) : N[G] — Aut(C(Q,Z)/Z(Q))

(in fact, mod is defined on the set of all homeomorphisms that preserve Mi(G)).
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Repeating the proof given in [GPS2] for a single minimal homeomorphism,
one can show that o
ker(mod) = [G] “

(here bar means the closure in the weak topology). But as we have seen, the weak
topology does not reflect properties of full groups and normalizers. In particular,
the closure @Tw does not belong to N[G]. It would be interesting to find out if
the above formula holds for the A-topology.

Let H be a (countable, abelian) group and let Aut(H) denote
all group automorphisms of H. Given a € Aut(H) and hy,...,h, from H,
define V(e hi,... ,hy) = {B € Aut(H) : B(h;) = a(h;)}. Then the collection
{V(a;h1,... ,hy)} is a base of a Hausdorff topology o that turns Aut(H) into a
topological group.

Proposition 2.4. Let (2, G) be an approzimately finite C. m. system. Then
the map mod : (N[G],\) = Aut(C(Q,Z)/Z(G)) is continuous.

Proof. Wefirst note that the mod map is onto due to [GPS2|. Thus, for
every group automorphism « there exists R € N[G] such that mod(R) = a. It
suffices to check that if R, — R, then mod(R,) — mod(R). Take a neighbor-
hood V(mod(R); f1,... , fr) and show that for sufficiently large n, mod(R,) €
V(mod(R); f1,-.. . fx)- Let f; € C(Q,7Z) be a representative of f;, i =1,... k.

Then . .
fi= ZG;X(FJZ)a
Jje€J
where aé- € Z and FJZ is clopen, 1 = 1,... ,k, j € J. It follows from the A-

convergence of (R,,) that p(R,, R) — 0 and, therefore, R, (F') eventually equals
R(F) for any clopen F. Take ng so large that R,(F}) = R(F}) for all n > ng

and 1 = 1,... k, j € J. From (x*) and the above observation, we get t}}at
mod(Ry,)(fi) = mod(R)(fi), i =1,... ,k,i.e, mod(Ry,) € V(mod(R); f1,..- , fk)-
[ |
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