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The paper deals with linear operators in the Hilbert space H; ® H> defined
by matrices with, in general, unbounded entries. Criterions for such opera-
tors to be sectorial with the vertex at the origin are obtained, parametriza-
tion of all its m-accretive and m-sectorial extensions and a description of
root subspaces of such extensions by means of the transfer function (Schur
complement) and its derivatives are given. Analytical properties of the
Friedrichs extensions of the transfer function of a sectorial block operator
matrix are established.

1. Introduction

Let H be the complex Hilbert space. As is well known [15], a linear operator
S in H is called:
e accretive if its numerical range is contained in the closed right half-plane:
Re (Sf,f) > 0 for every f from the domain D(S) of S,

e sectorial with the vertex at the complex point a and a semiangle a € [0,7/2)
if its numerical range is contained in the closed sector O,(a) = {z €eC:
|arg(z —a)| < a}.

Below such an operator will be called sectorial. Clearly, an operator S is sectorial
with the vertex at the origin and a semiangle « if and only if it satisfies one of
the following equivalent conditions:

|Im (Sf,f)| < tanaRe (Sf,f), f €D(S),

1
|(8£,4)] < — —Re (1), f €D(S).
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An operator in H is called maximal accretive (m-accretive) if it is accretive and
has no accretive extensions in H. The definition of a maximal sectorial (m-sec-
torial) operator is analogous. An important class of sectorial operators forms the
set of non-negative Hermitian operators (a = 0, o = 0).

One of the problem considered in the present paper is the following: let Hy
and Hy be the Hilbert spaces. What conditions on not necessarily unbounded
linear operators A : Hy - Hy, B: Hy —» H;, C : HL — Hy, D : Hy — Hy
guarantee that the operator T given by the matrix T = [é g} in the Hilbert
space H = H; @ Hj is accretive or sectorial with the vertex at the origin?

The following statement is well known [14, 17| (the generalized Silvester cri-
terion): the matrix operator T' of such a form is bounded selfadjoint and non-
negative in H = Hy @ H» if and only if A, B, C, D are bounded operatos and
the following conditions are fulfilled:

a) A= A* >0, b) C =B*, ¢)R(B) CR(AY?), d) D > B*A™'B,

where B*A~'B is equal to the operator (A '/?2B)*A /2B and A~1/? is the in-
verse to the operator AY2|R(A).

Conditions a)-d) are equivalent to the relation C* = B = AY/2ZD'/?, where
Z : R(D) — R(A) is a contraction.

Spectral properties of block operator matrices with in general unbounded en-
tries and their applications to systems of differential operators were studied in
[1, 10-13, 16, 18, 19]. The case of symmetric matrices T in the Hilbert and the
Krein spaces was considered in [1, 3, 19]. In particular, in [3] under certain condi-
tions on entries all selfadjoint extensions of T" were parametrized. Accretive block

matrices of the form T = _fé* ZB;] which arise in hydrodinamic problems were

considered in [11, 12].

In this paper under some assumptions we give a solution of the above men-
tioned problem and give a description of m-accretive and m-sectorial extensions
of a sectorial block operator matrix, the case of bounded entries is also considered.
The paper is organized as follows: in Section 2 we develop the approach of the
paper [7] for the parametrization of all m-accretive and m-sectorial extensions
with the vertex at the origin of a nondensely defined closed and coercive sectorial
operator S, the parametrization is given in the form of product of two matrices,
in Section 3 we give a description of root subspaces of m-accretive extensions of S
by means of corresponding transfer function (Schur complement) and its deriva-
tives, in Section 4 using results of Section 2 necessary and sufficient conditions
on entries of a matrix T in order to be sectorial with the vertex at the origin are
given and it is proved that the Friedrichs extensions of the corresponding transfer
function form a holomorphic family of types (A) and (B) [15], in Section 5 the
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case of bounded entries of block operator matrix is considered and an analog of
Silvester’s criterion for sectoriality in terms of Schur complements of the mat-
rix and its real part is obtained and in the last Section 6 we consider examples
of sectorial systems of differential operators and give applications of results of
Section 4.

We use the following notations: L($), &) denotes the Banach space of all
continuous linear operators acting from the Hilbert space $ into the Hilbert space
K and L(9) = L(H,$). Moreover, the domain, the range and the null-space of
a linear operator T we denote by D(T'), R(T') and Ker T, respectively. As is well
known [15] if S is a sectorial operator then the sesquilinear form (S-,-) has the
closure which we will denote by S[-,:] and by D[S] its the domain of definition,
let S[u] = S[u,u] be the corresponding quadratic form. A linear operator S
(a sesquilinear form s[u,v] ) is said to be coercive if the quadratic form Re (Su,u)
(Re s[u]) is positive definite. We will use the well known representation of an
m-sectorial operator with the vertex at the origin and the semiangle a and the
corresponding closed associated form (see [15]):

T = T)/*(I +4iG)TY?, Tlu,v] = (I +iG)Ty *u, Ty/*v), w,veDT], (1.1)

where Tg is the so-called “real part" of T', i.e., the non-negative selfadjoint
operator associated with the closed form Tgr[u,v] = (T[u,v] + T[v,u])/2 and
G = G* € L(R(T)), ||G|| £ tana. According to the Second Representation
Theorem [15] we have

DIT] = D(TY?).

2. Maximal accretive extensions of nondensely defined
sectorial operators

Let S be a closed sectorial operator defined on D(S) in a Hilbert space H.
Then if D(S) is dense in H, the m-sectorial operator S in $ which is associated
with S[u,v] is called the Friedrichs extension of S [15]. If S is nondensely defined
then the Friedrichs extension Sy is an m-sectorial linear relation and its operator
part is an m-sectorial operator in the subspace D(S) associated with the form
Slu,v], and the singular part Sg(0) coincides with the subspace $ © D(S) [20].
Note that if « is the semiangle of S then using its Friedrichs extension and (1.1)
we obtain the inequality

1

2
‘S[u,v]‘ = cos? o

Re S[u]Re S[v], u,v € D[S]. (2.1)

Among other m-sectorial extensions (operators or linear relations) with the vertex
at the origin of a given sectorial operator with the vertex at the origin, there is
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a unique m-sectorial extension Sy which is called the von Neumann—Krein
m-sectorial extension and which has the following properties [4, 5]:
1) D[S] C D[Sn] for every sectorial extension S with the vertex at the origin,
2) for every vector u € D[Sy] the relation holds

inf{|SN[u —fl], fe 73(5)} —0. (2.2)

The domain D[Sy] can be described by the equality:

_ . (151
D[Sn] = {u €H: fesg%)s) Re (51, 1) <00 p. (2.3)

If S is a closed coercive sectorial operator, i.e., Re(Sf,f) > ml|f||> for all
f € D(S), where m > 0, then the von Neumann—Krein extension is a densely
defined operator and

where 99 = H S R(S). Note that all closed sectorial forms associated with m-sec-
torial extensions with the vertex at the origin of sectorial operators or sectorial
linear relations were parametrized in [5, 6]. Abstract boundary conditions for
m-accretive and m-sectorial extensions of densely defined sectorial operator were
described in [7, 8]. Here we give a description of all m-accretive and m-sectorial
extensions of a nondensely defined coercive sectorial operator in the form which
is convenient for applying to operator block matrices.
Let S be a closed coercive sectorial operator in the Hilbert space H and let

D(S):H1CH, Hy,=Ho H,.

Denote by P; and P, the orthogonal projections in H onto H; and Hs, respec-
tively. Suppose that

d . -
(s) the operator A 2] P, S is m-sectorial in Hj.
Clearly, the operator A is a coercive. Let

A= AT +iM)AY? (2.4)
be the representation of A by means of (1.1). Then

DIS] = D[4] = D(4}]"),
Slu,v] = Alu, o] = (T +iM)A}{*u, 4{%0) , u,v € DIA.
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The Friedrichs extension of S is the linear relation Sp = Gr(A)@® (0, Hy). Since S
is a closed operator, by closed graph theorem the operators S(A—zI)"!, z € p(A)
are bounded. Therefore the operators P»S(A — zI)~! are bounded. Put

C=RS8, Q(z) =C(A-=2I)"!, Q=Q(0) =CA™ (2.5)
and let Q* = (CA*I)* : Hy — H; be the adjoint to ). Since
Q(2) = Q) = (= = Q)(A —¢D) 7,

the operator-function @(z) is a holomorphic function on the domain p(A).

Proposition 2.1. Let S be a closed sectorial coercive operator and let the
condition (s) be fullfilled. Then a vector uw € H belongs to D[Sn] if and only if
the vector Piu + Q*Pyu belongs to D[A].

Proof. Forevery u € H and every f € D(S) = D(A) we have
(u,Sf) = (u, Af + Cf) = (u, Af + CATAf) = (P + Q" Py)u, Af).

Taking into account that A is m-sectorial and (Sf, f) = (Af, f), from (2.3) we
obtain that u € D[Sy] <= (P1 + Q*Py)u € D[A]. n

In particular, Proposition 2.1 yields the equivalence:
h € D[Sy]NHy < (CA™Y)*h € D[A]. (2.6)

The next Proposition 2.2 was proved in |7, 9] for the case of densely defined closed
sectorial operator S satisfying the condition D(S*) C D[Sy] but it remains true
with the same proof for the situation under our consideration.

Proposition 2.2. Let S be a closed sectorial coercive operator and let the
condition (s) be fullfilled. If T is an accretive extension of S then D(T) C D[Sn].

Let us define on D[A] the quadratic functional

ulg] = sup{Re Al2p — 1, 1], [ € D(4)}. 2.7)
From (2.4) it follows that
Re A[2¢ — f, f] = [|(T +iM)A @lI> — | A" f — (I +iM)AY | .

Hence

ule] = ||(T +iM) A o) % (2.8)
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Note that (2.4) and (2.8) yield for all ¢ € D[A] the relation

2
sup LS _ 1 inny Y2002 = i)

ren(s) Re(Sf, f)

From (2.4) it follows also that D(((A1)g) /%) = D[A4],

A—1+A*—1 —1/2
()

2
, € D[A]

plel = ‘

and if A = A* then p[p] = Alp] = ||A/2¢||? for all ¢ € D[A].

As is well known [15] if 7 is a closed sectorial form with the vertex at the
origin in the Hilbert space then its domain D[] is also the Hilbert space with the
norm Re 7[u] + ||ul|?.

Proposition 2.3. Let W be a sectorial operator with the vertex at the origin
in the Hilbert space $) and let Y be a linear operator defined on D(W') with values
in D[A] satisfying the condition

plYh] < cRe (Wh,h) forall heDW).
Then the operator Y has the continuation Y on D[W] with values in D[A] and
p[?h] < cReW]|h] forall h e D[W].

Proof. Let h € D[W]. Then there exists a sequence {h,} C D(W) such
that

lim h, =h in $ and lim Re (W(hy — hm), hyp — hyp) = 0.
n—00 m,n—00

Moreover,
lim (Why,h,) =WIh], lim W[h, —h]=0.

n—00 n—oo

Taking into account the subordination condition for Y and the expression (2.8),
we get that {A%QYhn} is the Cauchy sequence in H;j. Since Ap is the positive
definite operator, the sequence {Yh,} is also the Cauchy sequence. Let y =

lim Yh, in H;. Then
n—o0

y € DI4], lim AP Yy = AV, Jim p[Yhn] = py].

Putting Yh =y, we get that u[Yh] < cRe W[h]. n
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Theorem 2.4. Let S be a closed sectorial coercive operator and let the con-
dition (s) be fullfilled. Let T be an accretive extension of S. Then operators

WPy (P, — CA~'P)Tu: B,D(T) — H, (2.9)
and
Y Pou %(A_lPlTu — (P + Q*P)u) : B,D(T) — D[A] (2.10)

are well defined and hold the relations:

(Tu,v) = A[Piu+ Q" Pou + 2Y Pou, Piv + Q* Pov] + (W Pau, Pyv),

u € D(T), v € D[Sx], (2.11)

D(T) = {u € H: Pue D(W), Pru+(Q" +2Y)Pu e D(S)},
Tu = S(Plu + (Q* + 2Y)P2'U/) + W Pu.

(2.12)

Moreover, the linear operator W is an accretive in Ho and for all u € D(T) the
inequality

plY Pyu] < Re (W Pou, Pou), u € D(T) (2.13)

is fulfilled. If T is a sectorial extension with the vertex at the origin and a semi-
angle o then W is also a sectorial operator with the vertex a at the origin and the
semiangle o and in addition

plY Pou] < sin? aRe (W Pyu, Pyu), u € D(T). (2.14)
If an extension T is m-accretive then the operator W is m-accretive in Ho.

Proof. Letus define operators Z and V by equalities

1
Zu= (P, —CA™'P))Tu, Vu= 5(,4—1131:ru — (P + Q*P)u), u € D(T).
(2.15)

Since T is an extension of S, by definitions we have Ker Z D D(S) and KerV D
D(S), and in view of Propositions 2.1 and 2.2 for all u € D(T') the vector Pju +
Q* Pyu belongs to D[A]. Therefore, R(V) C D[A]. Further for all v € D(T') and
all v € D[Sy] from (2.15) we have

A[Plu + Q*PQU + ZVU, Pl’U + Q*PQ’U] + (Z’LL, PQ’U)
= A[A™'P\Tu, (P; + Q*P2)v] + (P2Tu, Pov) — (P1Tu, Q* Pav)
= (PiTu, (P + Q*P)v) + (P Tw, Py) — (PiTu, Q*Pyw) = (Tu,v).
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It follows that

1/2 . 2 . 1/2 1/2 «
Re (Tu,u) = |[|[AR " (P1 + Q" P2)u||* + 2Re (I + iM )AL " Vu, Ay " (P1 + Q* P2)u)

+Re (Zu, Pyu) = [|AY> (P + Q*Py)u + (I +iM) A} Vul|?

+Re (Zu, Pyu) — ||(I + iM) A} Vul[2.
Since T' is an accretive operator, we have Re (T'(u—g),u—g) > 0 for all u € D(T)
and all g € D(S) = D(A). Hence

4K (Pru—g) + A Q" Pau+ (I +iM) Ay *Vul|?

+ Re (Zu, Pyu) — ||(I +iM)AY*Vul|? > 0

for all u € D(T'), g € D(A). Choosing a sequence {g,} C D(A) such that

lim AY%g, = A2 (P + Q" Po)u + (I +iM) A}V,

n—00

and using (2.8), we obtain
p[Vu] < Re(Zu, Pyu), u € D(T).

This inequality yields that if w € D(T) N Hy, then Vu = 0. Hence, using the
definition of V', we obtain that D(T) N Hy = D(S) and the operators

WPu ™ Zu, Y Pou ™Y Vu, u e D(T)

are well defined on the linear manifold P,D(T') C Hs. So, we’ve proved equality
(2.11) and inequality (2.13). Equalities (2.12) follow from (2.10) and (2.9).

Suppose that T is a sectorial extension of S with the vertex at the origin and
the semiangle «, then from (2.1) it follows the inequality

|(Tu,v)|" <

os? aRe (Tu, u) Re (T’U, v), u,v € D(T).

Consequently, from (2.11) for u,v € D(T') and f,¢ € D(S), using the operator
X = (I +iM)AY’Y, we obtain

2
cos? a | ((T+iM) A} (Pru—f+Q* Pau)+2X Pyu, AY *(Pro— o+ Q" Pyv) ) + (W Pyu, Pyo) |

<Re (((I+1M)A}{ (Pru—f+Q* Pyu)+2X Pyu, A} *(Pru—f+Q* Pyu)) + (W Pyu,Pou )

X Re (((I—H'M)A}%/2(Plv—(p+Q*P2v)+2XP21I,A /2 (P1'U ¢+Q*P211) WP2U P211 )
Choose sequences {f,} and {p,} from D(A) such that

. 1/2 1/2 X . 1/2 1/2 X
nli)ngoAR/ fn= XPgu—i—AR/ (P + Q" Py)u, nli)nc}oAR/ On = AR/ (P + Q" Py)v.
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Then we get the inequality

| (WPQ’U,, PQ’U) ‘2 <

< = (Re (WP, Pyu) — | XPoul[*) Re (W Pov, Pyo).

(2.16)

Putting u = v, we get that the linear operator W is sectorial with the vertex at
the origin and the semiangle a. Moreover, from (2.16) follows the inequality

| X Pou||? < sin® @ Re (W Pyu, Pou), u € D(T).

Taking into account the equality Y = A;zl/z(l +iM)71X and (2.8), we obtain
(2.14).

Suppose now that T' is an m-accretive extension of S. Let’s show that W is
an m-accretive operator in Ho. Let

This operator is defined on D(W) = P,D(T) and in view of density of D(T') in H,
the domain D(G) is dense in Hs. Since —1 is a regular point for 7', the equation
(T'+ I) = h has a unique solution u € D(T') for any h € H. Using (2.12), we
obtain that the system

A(:I:1 + Q*zoy + 2Y.’E2) +x1 = hy
C(.’El + Q*zo + 2Y.’E2) +Wxo+x9= ho

has a unique solution u = z1 + z9 € D(T) for any hy € Hy, hy € Hs. By the
direct calculation we get that R(G) = Hs and Ker G = {0}. Using (2.8) and
(2.13), we have for all h € D(QG)
Re (Gh,h) = Re(Wh,h) + ||h||* + 2Re (Yh, Q*(~1)h) + Re (Q*h, Q*(—1)h)

= Re(Wh,h) — ||(I +iM)AY*Y R
(T +iM) ALY R+ (T —iM) " AR Q@ (~1)h|
|| = iM) AR Q (1| + ||B|P + Re (Q*R, Q*(~1)h)

> Re (Q*h,Q*(~1)h) — Re (A71Q*(—=1)h, Q*(—1)n) + ||n||".
Since @ — Q(—1) = Q(—1)A~!, we obtain

Re (Q*h, Q*(—1)h) — Re (A 'Q*(—1)h, Q*(—1)h)
=Re (Q"h— Q" (-1, Q"(~1)k) —Re (A Q" (~1)h, Q" (~1)h) +[|Q* (= D)A||"
=l -l
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Thus Re (Gh, h) > Hh||2, h € D(G). This inequality means that G is an accretive
operator in Hs and in view of R(G) = H,, G is m-accretive. Since W is an
accretive operator and densely defined in Hy it has a closure W. If {h,} C
D(W) is the Cauchy sequence such that {Wh,,} is also the Cauchy sequence then
h = lim hy, € D(W) and Wh = Jim Wh,. In view of (2.8) and (2.13), the

sequence {Xhy}, where X = (I +iM)AY 172 , 1s also the Cauchy sequence in Hj.
Put Xh = lim Xh,. We get the operator X : D(W) — H; which is an extension

n—0o0

of X and which satisfies the condltlon ||Xh“ < Re (Wh h) for all h € D(W).
Let A = (I —W)(I +W)~! be the Cayley transform of W. The operator 2 is

a contraction in Hj defined on a subspace D(2) in Hy. Clearly, for every vector
h = (I+2)g € D(W) the condition

[Xoh[*< Re (Wh.h) = [l]|* — |[24]

is fulfilled. Let P be the orthogonal projection in Hj onto the subspace D(2) and
let A = Q[P Then the operator Q[ is a contractive extension of % in Hs, and the
operator W = (I — 91) I+ 91) is an m-accretive extension of W in Hj. Let’s
define the operator X on D(W) by the equality

X(I+A)g=X(I+A)Pg.
Then X is an extension of X on D(W) and for all i = (I +2)g we have
KR = [0 +20)P3]° < [Pl — [2P3° <[] ~ 96]° = Re (WF. ).
Thus, the operator X : D(W) — H; satisfies the condition
| Xoh||” < Re (Wh,h)  Vh e D(W).
Let Y = AR"/*(I +iM)~'X. Then ulY'h] < Re (Wh,h) for all h € D(W).
It follows that the operator G = W + I + Q(—1)(2Y + Q*) is an accretive

extension of G. Since G is m-accretive, we get that G =G and therefore, W=w.
Thus, the operator W is m-accretive. ]

Now we give a parametrization of all m-accretive and m-sectorial extensions.

Theorem 2.5. 1) Let S be a closed sectorial coercive operator and let the
condition (s) be fullfilled. Then formulas

D(T) = {u =11+ 911 € Hy, 29 € D(W), 1+ (QF +2Y)xy € D(S)},

Tu = S(x1 +(QF + 2Y)xz2) + Wis
(2.17)
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establish a bijective correspondence between all m-accretive extensions T of S and
all pairs <VV, Y>, where W is an m-accretive operator in Hy, Y : D(W) — D[A]
is a linear operator such that

u[Yh] < Re (Wh,h), h € D(W). (2.18)

The relations (2.17) are equivalent to the representation of the operator T by the
product of two block matrices with respect to the decomposition H = Hy & Hy:

T— [‘é V?/] [é Q*;QY]. (2.19)

The operator T is an m-sectorial extension of S wit h the vertex at the origin if
and only if the operator W 1is a sectorial operator with the verter at the origin
and for some ¢ € [0,1) holds the inequality

plYh] < 6?Re (Wh,h), h € D(W). (2.20)
In this case the associated closed sectorial form is given by

D[T] — {u =T —+ To X1 € Hla T9 € D[W]’ L1 + Q*:L'Z € D[S]}, (221)

Tlz1 + x2,y1 + y2] = S[z1 + (Q* + 2Y )2, y1 + Q*y2] + W a2, 2],

where Y is the continuation of Y on the Hilbert space D[W].

2) If A is positive definite selfadjoint operator in Hy then all non-negative
selfadjoint extensions of S and its associated closed forms are given by (2.17)
and (2.21) when W is a non-negative selfadjoint operator in Hy and Y = 0.

Proof. Let <VV, Y> be a pair consisting of an m-accretive operator W in the
space Hy and an operator Y : D(W) — D[A] which satisfies the condition (2.18)
and let T be an operator defined by (2.17). Clearly, the operator T is an extension

of S. Let us show that 7" is an m-accretive operator. Put X = (I — iM)A}{QY.
Then by (2.18), the operator X satisfies the condition || Xh||> < Re (Wh,h) for
all he D(W). Let u =z1 + 22 € D(T), e = z1 + (Q* + Y)xo then
Re (Tu,u) = Re((A+ C)e,u) + Re (Wzo, o)
= Re((I+CA ") Ae,u) + Re (Wao,z9)
= Re (Ae, e) — 2Re (Ae, YxQ) + Re (WfEQ, x2)
1/2 2 1/2 . 1/2
= |44 €e||” —2Re (Af e, (I —iM)AL Yz3) + Re (W, z2)
= ||A}%/2e - X£E2||2 + Re (W:EQ,:EQ) — ||X:B2||2 > 0.
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Thus, T is an accretive operator. As was shown above, the operator
G:W+I+Q(—1)(Q*+2Y) :Hy —» Hy

is also an accretive and coercive operator in Hy. Let us show that G is m-accretive.
Since an arbitrary number y < 0 is a regular point of W and HYgH2 < cpl[Yyg]
for every g € D(W) and some ¢ we have for arbitrary h € Hy

Y (W —yI) 7 h|]” < cu[Y (W —yI)~'h]
<cRe(W(W —yI)~'h, (W —yI)~'h)
=cRe (h,(W —yI)~'h) + cy||(W + yI)_lizH2 < c|y|_1”hH2.
It follows that for a sufficiently large a > 0 the operator Q(—1)(2Y + Q*)(W +

(14 a)I)~! has the norm less then 1 and therefore the operator I + Q(—1)(2Y +
Q)W + (1 +a)I )71 has a bounded inverse defined on Hy. From the equality

W+1T+al+Q(-1)(2Y + Q%)
T+ Q(-1)2Y + Q") (W + (1+ a)I)_l) (W + (1 + a)I)

~/

it follows that R(W + (1 +a)I + Q*(2Yy + Q*(—1))) = H,. Hence, the point —a
is regular for the operator G = W + I + Q*(2Y + Q*(—1)). Consequently, the
operator G is m-accretive. Therefore, the system

A(I1 + Q% xo2 + ZY.CCQ) +x1 = hy
C(wl + Q*zy + 2Y£L‘2) +Wxog+x9 = ho

has a unique solution for arbitrary hy € Hy, hy € Ho. By (2.17) it follows that
—1 is a regular point for 7. Consequently, T is an m-accretive operator.

Let W be an m-sectorial operator with the vertex at the origin and let the
condition (2.20) be fulfilled. Let’s show that T is an m-sectorial extension of S
with the vertex at the origin. Let again u = z1+z9 € D(T), e = 21+ (Q*+Y)zo,
then using (2.17) and (2.20), we have

Re (Tu,u) < ||A}z/2e}|2 + 2‘ (1 - ’L'M)A}l/2YIE2, A}zﬂe)) ‘ + Re (Wzo,22)e
< ||A;/26H2 + Re (W.Tg,.’L‘Q) + (5(Re (Wxg,xg) + ||A¥2GH2)
< (1—{—(5)(”14}2/26”2—}—116 (Wxg,:vg)).

Analogously, holds the inequality

Re (Tu,u) >(1- 5)(“14}2/26”2 + Re (Wacg,xg)).
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If « is the semiangle for A and 3 is the semiangle for W, then for the imaginary
part of the quadratic form (Tu, u) we obtain

|Im (Tu,u)|
tan o ||A}z/2w|2 + 2| ((I — Z’M)A%QYZ'Q, A%26)| + tan B Re (Wxg,wg)
tan o ”A}_{Qe”Z + tan 8 Re (Wxg, xg) + (5(Re (Wxg, 3:2) + ||A}z/2e“2)
maz{tan o, tan f} + 5) (”A}EE/QeH2 + Re (WIEQ, :BQ))

<
<
<
< (maa:{tan a, tan 8} + (5) (1—46)"'Re (Tu, u)

Thus, T is a sectorial operator with the vertex at the origin and its semiangle
~ has an estimate

tany < (maz{tanca, tan B} +6)(1 —6) .

Since W is m-sectorial, the operator 7' is an m-sectorial extension of S.

Let T given by (2.17) be the m-sectorial extension of S. Now we shall proof
relations (2.21). As was proved above, we have the estimate for u = z1 + z2 €
D(T):

(1= 8)(J|4¢* (@1 + Q*22)|” + Re (W, 3) ) <Re (T, u)
< (1+9) (||A}%/2(x1 + Q*xg)H2 + Re (W:cz,xg)).

Let u € D[T], then v = lim u,, lim (T(un — Up), Uy — um) = 0, where
n—00 n,m—00
Up = :Bgn) + xgn) € D(T), n=1,2,.... Consequently,
Jm ol = of €y, Jim of = o} € M, u=af 4}
: /2, (n) _ (m) *((n) _(m)\y|| —
n,,l}lE}OOHAR (z T+ Q% (zy Zy ))” 0,
. (n) _ (m)y (n) __ _(m)y _
n,TlrlLr—I)loo Re (W(zy” —z3), 25" —zy ") = 0.

It follows that 29 € D[W], 29 + Q*z) € D[A], and from (2.17) we obtain

T[u] = lim (Tuna un) = A[x(l) + Q*iﬂg + 2?1‘3; 3:(1) + Q*Iﬂg] + W[.’Eg],
n—o0
where ¥ : D[W] — D[A] is the continuation of Y on the Hilbert space D[W].
Let ¢ € D[A] and z9 € D[W]. Since zo € D[W], then there exists a sequence
{xg")} C D(W) such that
(n) _

nli)nolo Wizy ' —z9] =0, nli)ngon = Z9.
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In view of (2.20) and (2.8), we have li_)m ngn) = Y, in D[A]. Since ¢ € D[A],
there exists a sequence ¢, € D(A) with the property

. . 1/2
Jim Alpn = ¢] = Jim A (on =) =0

Consider the sequence {p, — (Q* + 2Y)ac§n) + :vgn)} According to (2.17), for
every n the vector u, = pp, — (Q*+2Y )z, (n) -I-xg ") belongs to D(T') and li_)m Up =
n—oo
— (Q* 4+ 2Y)zy + z2. From (2.17) it follows

(T(Un — Um), Un _“m) :(A(‘P m)aSOn — (@™ +2Y)(ws o -Tgm)))
+ (C’A LA(pn — —$2 ) + (W( mg )) xé n) wgm))
=(Alpn — pm), Pn — pm — 2V (") — z{™)) + ( (28" = af™), 2" — ™)
=(A(¢n = Pm), pn — ) (1 + i) A (g — o), ALY (1) — )

+(W<xé’ z5™), @} o é))-

Consequently,
lim (T(un — Upp), Uy, — um) =0.

n—0o0
This means that the vector u = ¢ — (Q* + 2Y)z2 + x2 belongs to D[T] and
moreover,
Thu] = lim (Tup,u,) = Alp, @ — 2V zo] + Wzg, 23]
n—r00
So, the relations (2.21) are proved.

If A is a positive definite selfadjoint operator in H; then S is a positive definite
Hermitian operator. Every non-negative selfadjoint extension 7" of S is an m-sec-
torial operator with vertex at the origin and the semiangle o = 0. According to
Theorem 2.4 and (2.14), we obtain that the corresponding operator W is a non-
negative selfadjoint in Hs and Y = 0. |

As is well known, a densely defined accretive operator has the closure. It is
easy to see from (2.9)—(2.13) that the closure 7' of an accretive extension 7' of S
takes the form

D(T) = {u €H:PucDW), Plu+ (Q*+2Y)Pu € D(S)},
Tu = S(Piu+(Q*+2Y)Pu) + WPu,
where W is the closure of a densely defined accretive operator W and Y is a con-
tinuation of Y on D(W).

Let W be a closed densely defined sectorial operator in He with the vertex
at the origin and suppose that Y : D(W) — D[A] satisfies the condition (2.20).
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Let Wr and Wy be the Friedrichs and von Neumann-Krein extensions 9\f w.
In accordance with Proposition 2.3 the operator Y has the continuation Yz on
the Hilbert space D|[W| = D[WF]| preserving the estimate (2.20). In view of the
relation (2.2) we have for Wy

inf{Re Wxlh— f], f € D(W)} =0, h € D[Wy].

It follows that the operator Y has the continuation Yy on D[Wy] with values in
D[A] and this continuation preserves the estimate

u[Yyh) < 82 ReWylh], h € D[Wy].

Theorem 2.6. Let S be a closed sectorial coercive operator satisfying the
condition (s) and let T be a densely defined accretive extension of S . Then there
s a bijective correspondence given by (2.17) between all m-accretive extensions
T of T and all pairs <W Y>, where W is an m-accretive eztension of the closure
W of the operator W defined by (2.9) and Y is an estension of the continuation
Y on D(W) of the operator Y defined by (2.10) such that the condition (2.18) is
fulfilled.

If T is a closed densely defined sectorial extension of S with the vertexr at the
origin then its m-accretive extension T is m-sectorial with the vertez at the origin
if and only sz is an m-sectorial extension of W with the verter at the origin and
for some & € [0,1) the condition (2.20) for Y is fulfilled. In particular, the pairs
<WF,YF> and <WN, YN> correspond to the Friedrichs and von Neumann—Krein
extensions Tr and Ty, respectively.

Proof All statements except one are immediate consequences of Theo-
rems 2.4 and 2.5. We have to prove only that the pair (WN, YN> defines by (2.17)

the von Neumann—Krein extension of T'. Let the operator T be defined by the
relations (2.17) with (Wy,Yy) and let u € D[T]. Then

u=¢—(Q" + Q?N)m + z2, p € D[A], z2 € D[Wy]

and according to (2.21) for all h = 1) — (Q* +2Yy)g € D(T), where 1 € D(A), g €
D(W), we have

Tlu—h] = Alp — 9,0 — 9 — 2¥n (22 — g)] + W[z — g).

Since Wy is the von Neumann Krein extension of W, there exists a se-
quence {gp} C D(W) such that li_>m ReWn(z2 — gn] = 0. It follows that
n—oo

1i_>m u[Yn(z2 — gn)] = 0. Also we can find a sequence {1} C D(A) such that
n—od
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lim Re A[p — 1,] = 0. Hence, we obtain that lim ReT[u — hn] = 0, where
n—oo N n—oo
hn, = n — (Q* + 2YN)gn. This means that

inf{ReiF[u —h), he D(T)} =0, u € D[T).

Therefore, the operator T is an extremal m-sectorial extension of T' [4]. From the
relation

DIT) = {u=p— (Q"+2¥)zs + 5 € D[4], 3, € DWy]}

it follows that D[T] is the largest domain among all domains of closed forms
associated with extremal sectorial extensions. Consequently [4], the extension T'
coincides with the von Neumann—Krein extension T of T [ ]

3. On the resolvents and the spectrum
of m-accretive extensions

Let T be an m-accretive extension of S. According to Theorem 2.5 the ope-
rator T is defined by the pair (W,Y) and by formulas (2.17). In this section we
give a description of the resolvent and the spectrum of T'. Let

V=Q"+2Y
and
W(z) =W — 2zl — 2C(A — 2zI)7'V, z € p(A). (3.1)

The operator function W(z) is holomorphic on the domain p(A) and can be con-
sidered as a generalization of Schur complement.

Proposition 3.1. Let S be a closed sectorial coercive operator satisfying the
condition (s) and let T' be an m-accretive extension of S given by (2.17). Then

pT) N p(4) = {2 € p(A) : W(2) € L(H) }

and the resolvent (T — zI) ™! with respect to the decomposition H = Hy @ Ho has
the following matriz representation

(T — zI)~"
[T +AA—2D) VW H2)C) (A—2I) ! —A(A—2I) VW (z)
= ~W(2)C(A — 2I)7! W=(2) ] '

(3.2)
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A number z € p(A) is an eigenvalue of T if and only if Ker W (z) # {0} and in
this case

—A(A—2I)"Vh

h , heKerW(z). (3.3)

Ker (T — 2I) = [

Proof. From (2.17) it follows that the equality (T'— zI)u = f is equivalent
to the system

A(.’L‘l + V.’L‘Q) — 2T = fl
C(z1+ Vo) + Wae — 239 = fo,

where f1 = Plf, fQ = ng, I = Plu, Iy = PQU. Hence,
214+ Vay = (A—2D) ' (fi — 2Vaz), W(2)z2 = fo— C(A—2I) " fu.

These equalities yield the assertions of the proposition and relations (3.2) and
(3.3). [ ]

Further we give a description of root subspaces of T.

Proposition 3.2. Let S be a closed sectorial coercive operator satisfying the
condition (s) and let T be an m-accretive extension of S given by (2.17). Then
for every natural j > 2, every u € D(T?) and every z € p(A) the equality holds

j—1
k=0

Proof. From (3.1) follow the equalities
W (2)u = (—I —C(A—2D)" A(A - zI)—lv)u,
W®E (2)u = —kIC(A — 2I) " A(A — 2I) " *Vu, k > 2, u € D(W).
From (2.17) it follows that

P (T — zI)u = A(P, + VPy)u — zPyu,
Py (T — zI)u = C(Py + VPy)u+ (W — zI) Pyu.

We shall prove (3.4) by induction. Let j = 2 and u € D(T?). Then

Py(T — zIu = C(PL + VP)u+ (W — 2I)Pou € D(W),
P (T —2z2lu+VP(T — 2zI)u = A(P1 + VPy)u — zPiu

+V ((](P1 +VPy)u+ (W — zI)P2U> € D(A).
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We obtain following equalities:
W (2)Pyu + W!'(2) Py (T — 2zl)u = (W — 2I — 2C(A — 2I) V) Pu
+(~T = C(A= 2D A = 21)7V) (C(Py + V) + (W — 21)Pyu)
=—2C(A—2I) " 'VPu—-C(P +VP)
“CO(A— 2I)~ A(A — zI)_1V(C(P1 FVP)u+ (W — zI)Pgu)
—C(A—2D)! (zVPgu 4 (A—2D)(P + VPg)u)
—C(A—2I) YA(A - 2I) 'VP(T — zI)u
—C(A—zI) (A(P1 +VPy)u— zPlu)
—C(A—2zI)7YA(A — 2I) 7'V P(T — zl)u =
C(

C(A—2I) 1P (T — 2I)u— C(A — 2I) Y A(A — 2I) 'V P(T — zI)u
—C(A—2D)"AA — 2D (A — 2D) APy + VPQ) (T — zI)u
“C(A—2I)" " A(A — 2D~ (P, — 2471P + VP2) (T — zI)u
—C(A—2I)""A(A — 2I)~1A~! (A(P1 +VP) — zPl) (T — 2D)u
—C(A—2I)?P(T — zI)%u

Suppose that (3.4) holds for fixed j > 2 and let u € D(T7*!). Then

J
Z %W(k)(z)Pg(T —2D)fu = —C(A— 2I) 7 P (T — 2I)u
k=0 "

= —C(A— 27T A(A — 2I) TV P(T — zI)u
—C(A—2zI)TA(A — 2I)~ ((A — 2I)A7'P + VPQ) (T — 2I)u
A

—C
=-C

A= 2079 ( (P1+VP2)—zP1)( — 2l

(
(
—C(
(
(A—2I) 737 P(T — 2I)7 .

)"
)
2I)TTYA(PL + VP — 2A Y P)(T — 2T)u
)
)
|

Proposition 3.3. Let Hy" =Y, ®H; and let W,,(2) be the operator func-
tion in Hy™ defined by the equality

[ () 0 0 ]
TW'(2) W (2) 0
W, (z) = (jjl)!w'(jfl)(z) W (=) 6
W () (n_IQ)!W("‘Z)(z) W(2)|

550 Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 4



On sectorial block operator matrices

Py (T — 2zI)" 'u
Ko(2)u™ Pa(T = ,zIyHu . weD(T).
Péu
Then W, (2)K,(z) u = 0 for every u € D(T™) such that (T — zI)"u = 0.

Proof. Let (T —zI)"u =0 and j > 2. Then according to Proposition 3.2
we have

Q
,_n

1

k!

i1
W P(L = 2144 — (Y LW O @) nu(r = 0P (2 a1y
0 — k!

ES
Il

— C(A— 2D P\(T — 2I))(T — 2I)"u = 0.

Since (T — 2I)(T — zI)™ 'u = 0, according to Proposition 3.1 we obtain
Po(T — 2I)"'u € Ker W (2). ]

Thus, the operator K, (z) maps Ker (T — zI)" into Ker W,,(z).

Proposition 3.4. Let the operator function V,(z) : Hy" — H be defined by
the equality:

ho
h1
Valz) | . ZA KV hy_ g+ hn_1, ke €EDW), k=0,... ,n—1.
hnfl
ho
- - h1
Then Vy(z)h € Ker (T — zI)™ for every h= | . | € Ker Wp(2).
hn—l

Proof By the definition of Wy(z) the condition & € Ker Wp(z) is
equivalent to the system

— Z CA—2I)"*A(A - 2I)""Vhy_p — hy_1 + W(2)h, =0, 35)

r=01,... ,n—1
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For the vector V,(z)h = — ZZ_% A(A - 2I) "V hy,_j + by 1 we have
n
(PL+VP)V,u(2)h ==Y A(A—=zI) *Vh, 1+ Vh,_,
k=1
=— Z A(A=2I) *Vhy_p +Vhy1 — A(A—2I) 'Wh,_y
=— ZA —2D) *Vh,_ — 2(A = 2I) " 'Wh,_, € D(A).

By Theorem 2.5 we obtain that u = V,,(z)h € D(T) and
(T — zl)u = (A —z2I)(PL+VPR)u+2VPu+ F(PL+ VP)u+ (W — zI)Pyu

= —(A—2zI) Z A(A—2D)*Vh,_ — 2(A = 2I)(A — 2I) " *Vhp_1 + 2Vhp_y

— Z FA(A—2I) *Vh,_p — 2C(A — 2I) "Why_1 + (W — 2D)hpp_;
=— Z A(A — 2I) "W,y

n
— Y FA(A = 2I) M A(A = 2I) Wy _g, 4+ W (2)hn
Since from (3.5) for r = n — 1 we have
n
==Y C(A—2) " AA - 2I) " 'WVhp_g, + W(2)hy 1,

then .
(T — 2D)Vy(2)h = hy 5= Y A(A—2I) " Vhy_y.

Analogously, by induction one can prove the equalities

(T — 21V (2)h = hy j 1 — Z A(A— 2D " Vh, 4, j=1,2... ,n—1.
k=j+1
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It follows if j = n — 2:

(T — zI)" 2V, (2)h = —A(A — 2I)"'Vhy + hy — A(A — 2I) "2V hy,
(P, + VP)(T — 2I)" 2V, (2)h

= —(A—2)rA(A — 2I)"Vhy — 2(A — zI)"Vhy € D(A),

Py(T — 2I)" 2V, (2)h = hq,

Pi(T — 2zI)" "V, (2)h = P(T — 2I)(T — zI)" >V, (2)h

= (A(PL + VPy) — 2P ) (T — 2I)" 2V, (2)h = —A(A — 2I) "'V kg,
Py(T — 2I)" "V, (2)h = Po(T — 2I)(T — 2I)" 2V, (2)h

= (F(P, + VP) + (W — 2I)P) (T — 2I)" 2V, (2)h

= —C(A—2I)"2Vhg—2C(A — 2I) " 'Vhy + (W — zI)h.

From (3.5) for 7 = 1 we obtain

ho = —C(A — 2I)"2Vhy — 2C(A — 2I)"'Vhy + (W — 2I)h,.

Therefore,
(T — 2I)" 'V, (2)h = hg — A(A — 2I) "V hy.
Hence N
(P +VP)(T — 2I)" 'V, (2)h = —2(A— 2I) ' Vhy
and in view of W (z)ho = 0, we get (T — 2I)"V,(2)h = 0. ]

From Propositions 3.3 and 3.4 it follows that

dim Ker (T — 2I)" = dim Ker W, (z).

4. Block operator matrices

In the sequel we suppose that the following conditions on operators are ful-
filled:

(a) A is a closed m-sectorial and coercive operator in H; with the domain
D(4),

(b) C is a closed operator from Hj into He and D(C) D D(A),

(c) D is a linear operator in Ho,

(d) B is a linear operator from Hj into Hj,

(e) the linear manifold Dy = D(B) N D(D) is dense in Hy.

Consider in the Hilbert space H = H; @& H, the operator T defined by the
block operator matrix

T— [‘é g] (4.1)
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with the domain D(T) = D(A) @ Dy. Note that with T can be associated the
system of differential equations

) L)

dt [22(t)
and the linear stationary dynamical system

I
~
—~

o~
SN—

{mg (t) + Az1(t) + Baa(t)
zy(t) + Cz1(t) + Dxa(t) =  g(t)

z'(t) + Az(t) + Bu(t) = 0,
v(t) + Cz(t) + Du(t) = O.

Note that the operator T given by (4.1) one can consider as an extension of the
operator S = A+ C, D(S) = D(A). In view of the conditions (a) and (b),
the operator S is closed sectorial with the vertex at the origin, coercive and the
condition (s) is fulfilled. Here we give necessary and sufficient conditions for the
operator T given by (4.1) to be an accretive or sectorial operator with the vertex
at the origin.

Proposition 4.1. Let the conditions (a) and (b) be fulfilled. Then the fol-
lowing assertions are equivalent:
1) (CA™")*H, C DIA]; 2) D(C) 2 DIA].

Proof 1)= 2)Let (CA!)*Hy C D[A] = D(A}Q/Q), then from the equality
((CA™Y)*h, Az) = (h,Cxz) for every h € Hy and z € D(A) and (2.3) follows
H, C D[Sn], where Sy is the von Neumann—Krein extension of the operator
S = A+ C and by closed graph theorem we obtain that the operator S}\//;[HQ is
bounded. Since for every u € D[Sn] holds the equality (see [4, 5]):

|(u,Sf)|2 B . 1/2 112
(288 ez — N0+l

where Sy = Syn(I + iMy)Syn, we obtain |(h,Cz)| < ¢ ||A} 2| for all

h € Hy, Yz € D(A). Consequently, ||C’:1:|| < cHA}fm” for all z € D(A). Since C
is closed, it follows that the domain of C contains D(A%Q).

2)= 1) Let D(C) 2 ’D(A;f), then the operator C‘A,}l/2 is bounded and
(CA™YY = AT — iM)=(CAL'?)". Therefore, (CA=1)*Hy C D(AY?). m

Proposition 4.2. Let the conditions (a)—(e) be fulfilled. Then
1) the following statements are equivalent:
i) the operator T' given by (4.1) is accretive in H,
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i) holds the inclusion (CA™1)*Dy C D[A] and for every vector h € Dy
the condition

%M[(A*_IB +(CA™Y)*)h] < Re (Dh, h) (4.2)

is fulfilled,

iii) the operator D — CA™'B defined on the domain Dy is accretive
in Hy, the inclusion (CA~1)*Dy C D[A] holds and for every vector h € Dy the
condition

(A7 B — (CA7Y)h] <Re (D~ CA™'B)h, ) (4.3)

is fullfilled;

2) the operator T is sectorial with the vertez at the origin if and only if:
(CA=1)*Dy C D[A], the operator D — CA™'B defined on Dy is sectorial with the
vertex at the origin in Hy and

1
Zu[(A’lB — (CA 1*)h] < 6°Re ((D— CA 'B)h,h) Vh € Dy, (4.4)
where ¢ € [0,1).

3) the operator T is m-accretive if and only if: (CA=1)*Dy C D[A], the
operator D — CA™'B defined on Dy is an m-accretive in Hy and holds (4.3).

Proof i)=ii). Let T be an accretive operator. Then T is an accre-
tive extension of the operator S. From Proposition 2.2 and (2.6) it follows that
(CA™Y*Dy C D[A]. For this case the operators W and Y defined by (2.9) and
(2.10) take the form

W=D-CA™'B,Y = %(A‘lB —(CA™HY"), DW) =D(Y)=Dy. (4.5)

According to Theorem 2.4, the operator W is accretive in Hy and (4.3) holds. If
T is sectorial with the vertex at the origin then W is also sectorial with the vertex
at the origin in Hy and (4.4) holds.

The equivalence ii) <= iii) follows from the equality which can be easily
checked:

Re (D — CA™'B)h,h) — iu[(A_lB — (CA™Y)*)A]
= Re (Dh,h) — iu[(A**lB + (CA™Y)*)h], h € Dy.
Evidently, for the operator T" we have

D(T):{u:w1+cc2:w1€H1, x2€Dy, :c1+((CA_l)*—I—A_le(CA_l)*)szD(S)},
Tu=S(x1+((CA™1)*+A"1B—(CA~1)*)z2)+(D—-CA~1B)x>.
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If W = D — CA™!B is accretive (sectorial) in Hy and Y = Z(A71B — (CA™1)*)
satisfies the condition (4.3) ((4.4)) then by Theorem 2.5 the operator T is accretive
(sectorial). Thus, iii)=- i) and assertions 2) and 3) are proved. ]

Remark 4.3. Proposition 4.2 is a generalization of Silvester’s criterion. If A
s a positive definite selfadjoint operator in Hy, B C C* and D 1is a symmetric
in Hy, then (CA Y)*Dy = A"'BDy C D(AY?), the operator D — CA™'B is
a symmetric and (A™'B — (CA™Y)*)h = 0 for all h € Dy. In this case we
obtain from Proposition 4.2 the following necessary and sufficient condition of
non-negativity of T':

(D—CA™'B)h,h) >0 forall h € D.

Example Let H2> = H® H and let A be an m-sectorial coercive
operator in H, D be a bounded m-accretive operator in H. On the domain
D(T) = D(A) ® D(A*) C H? consider the operator defined by the matrix

A EA*
ERI
where ¢ # 0 is a complex number. Here B = £A*, C = —£A.

Let us check the conditions of Proposition 4.2. Since D is bounded and accre-
tive and A* is m-accretive, the operator D — CA™'B = D + [£]2A* = D + |¢|2A*
is also m-accretive in H. Note that D + |£|2A* is also m-sectorial. In fact, for
every h € D(A*) from sectoriality and coercivity A* we have

[T (Db + €2 A"h, B)| < [IDI[|[A? + KI¢ Re (A%h, b)
< cRe (A*h,h) < cRe (Dh + |£[*A*h, )

for some ¢ > 0. In addition, (CA=1)*D(B) = D(A*) C D(AK?)

bl

LA B o (catyn] = ulea A e
= Ly anayeaa o
= Ifl (0 =M A R (1 + M) A
= |f| ||A}{2h|| — [¢[?Re (A*h, 1), h € D(A").
Finally,
iu[(A‘lB—(CA‘l)*)h] = [¢[?Re (A*h,h)

< Re (Dh,h) + |¢[’Re (A*h,h) = Re((D—CA™'B)h,h), h € D(A").
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In accordance with Proposition 4.2 we get that T is m-accretive. Let’s show
that T is m-sectorial with the vertex at the origin if and only if A is a bounded
operator and D is a coercive operator. In fact, if the condition (4.4) is fulfilled
with § € [0,1) then

[€” Re (4°h, h) < 8{Re (Dh,h) +[¢[Re (4"h, h) }.

It follows that Re (A*h,h) < kRe (Dh,h) < m||h||* for all h € D(A*). There-
fore, A is a bounded operator and D is a coercive.

Remark 4.4. In [11] there were considered operators in the Hilbert space
H = Hi & Hy given by the matrix

A B
=% )

where A is a positive definite selfadjoint operator in Hy, B : Hy — Hy is an un-
bounded closed operator such that D(B*) D D(A'Y?) and D is a bounded positive
definite selfadjoint operator in Hy.

Under these conditions there was shown in [11] that T is an unclosed, essen-
tially m-accretive and coercive operator (Re (Th,h) > a”h”2 for all h € D(T) =
D(A) & D(G) for some a > 0). This result follows also from the fact that
D+ B*A™'B = D+ B*A Y2A"Y2B s an essentially selfadjoint and positive
definite operator on D(B) in view of B*A~1/2(B*A~Y2)* is a bounded operator
and B*A™'2A='2B ¢ B*A~'/2(B*A~/?)*.

Remind [15] that a family of closed operators V (z) is called a holomorpic of
the type (A) in a domain Q of the complex plane C if D(V(z)) = D = const
(does not depend on z € Q) and a vector function V(z)u is holomorphic in €
for every u € D, and a family of m-sectorial operators V' (z) forms a holomorphic
family of the type (B) in Q if D[V (z)] = D = const and a function V(z)[z,y] is
holomorphic in €2 for every z,y € D.

C D
a sectorial operator with the vertex at the origin. Then in p(A) operators D —
C(A — zI)™'B are sectorial on Do and its Friedrichs estensions (D — C(A —
zI)_lB)F form a holomorphic family of the types (A) and (B).

Theorem 4.5. Let the conditions (a)—(e) be fulfilled and T = [A B] be

Proof. Notethat if U is a linear isomorphism of H and L = U*TU, then
operators T and L are sectorial simultaneously and in this case the equalities hold

UD[L] = D[T], Llu,v]=T[Uu,Uv], wu,v€ D[L],
UD(Lp) = D(Tr), Ly =U*TwU.
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Let z € p(A), Q(z) = C(A—2I)~! and let U, = [I —@ (Z)] . Then U, is a li-
U

0 I
near isomorphism of H = H; @ Hy and U} = [—QI(Z) (I)] , U7t = [(I) QI(Z)] )

Consider the operator

L. =U;(T = 2D)U. = [— I(z) ?] [A & D_Bzz] [é _Q;(z)] :

Clearly,

D(L,) = { [6’1] @1 = Q(2)ez € D(A), }

€9 es € Dy

N Rl e

Let T be a sectorial operator. Then L, is also sectorial. Therefore, there exists
a positive number ¢ such that the operator L, + cI is sectorial and coercive. Let

A, =A—z21, Y, = (A,'B-Q*(2)/2,
Y.=Y, —c(A, +cI)7'Y,, W, =D~ CA;'B — zI,

pelig] = sup{Re (4, +eD)[20 — £, f], f € D(A)}.
Then for u = e; + ey € D(L,) we have
(L, + cD)u,u) = ((A, +cI)(e1 +2Yce), e1) + (W, + cl)es, e2).

The operator L, + ¢l is a sectorial extension in the space H, @ H» of the operator
A,+cl. Therefore, from Theorems 2.4 and 2.5 it follows that the operator W,+cI
is sectorial with the vertex at the origin and pu.[Y.es] < 6% Re ((Wz + cl)es, 62)
for all es € D(W,) with some ¢ € [0,1). Moreover, replacing T by L, +cI and S
by A, + cI in (2.21), we obtain that

DIL,] = DIL, + cI] = D|A] ® D[W,).

Since

PyDIT| =D[D — CA™'B], B,D(Tr) =D((D — CA™'B)r),
by definition of the operator U, we obtain
DW,] = P,D[L,]| = PoD[T — zI| = P,D[T] = D[W] = const,

where
W=D-CA'B=D-QB.

558 Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 4



On sectorial block operator matrices

Clearly, the operator Y, is bounded from the Hilbert space D[W, + cI] into the
Hilbert space D[A, + cI] = D[A] and hence, it has a continuation Y, on D[W,]
with values in D[A]. Applying Theorems 2.5 and 2.6 and formulas (2.21), (2.17)
for the operators A, + cI C L, + cI, we obtain equalities

(Lz + CI)[U,,’U] = (Az + CI)[61 +?c€2,h1] + (Wz + CI)[GQ,hQ],
u =e1 + e, ’U=h1+h2€D[Lz],

pr) - {u=re TR

2)F)
(L)r + cl)u = (A, + cI)(e1 + Yeez) + (W) p + I es.
It follows that
D((W,)r) = ,D((L,)r) = P2D(Ir) = Wr = const.

Let us prove that the function W,[h, ¢] is holomorphic on the domain p(A) for all
h,g € D[W]. For the operator Y, we have the equality

YV, =T +cA )Y, = (I+c(A-=z2I) Y.
Since for every f € H; hold inequalities
|42 (A =207 f|P = Re(A(A—zD)7'f,(A—2D)7'f)
[(f(A=2D) f) | + 12| (A — 2D) 7 £
< KE||FIP < b4 f,

IA

the operator Y, is bounded from the Hilbert space D[W] into the Hilbert space
D[A]. Tts domain is dense in D[W]. It follows that Y, has a continuation Y, on
D[W] and

Y,=({I+c(A-2zI) )Y,

In addition for u = e; + e2, v = g1 + g2 € D[L,] = D[A] @ D[W] we have
L,[u,v] = (A — zI)[e1 4 2Y ez, g1] + W [e1, go).
Taking into account the relation T — zI = UL, U !, we obtain
71+ Q"(2)a € DIA] }
z9 € D[W] ’
(T — 2I)[z,y] = (A — 2D)[z1 + Q" (2)x2 + 2Y pz2,y1 + Q" (2)y2] + W22, yo]
for z = 1 + 2, y = y1 + y2 € D[T]. Besides, from (2.21) we have
z1 + Q*z2 € DIA], }
x9 € D[W] ’
Tlu,v] = Alz1 4+ Q*z2 4 2Y za,y1 + Q" (2)y2] + W [x2, 2]

DT = {u:w1+$2:

DT = {u:$1+w2:
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foru = z1 +x9, v =1y1 + y2 € D[T], where ¥ = %(A_IB — Q*) (see (4.5)).
Let £ = —Q"12 + 72, y = —Q"(2)y2 + y2, then —Q*zy + Q*(2)z2 = Z(A* —
zI)~'Q*zo € D[A] and

Welz2,y0] = (T — 2I)[z, —Q" (2)y2 + yal- (4.6)

The function z(z, @*(2)y2 — y2) is holomorphic on z in p(A). Since
Q*(€) — Q*(2) = (€ — 7)(A* — €1)7'Q*(2), we obtain R(Q*(¢) — Q*(z)) C D[A].
In addition

A (A" =8 = (A —E) ) = €A (A ) (AT e

and the operator A}Q/Q(A* —zI)~! is bounded in H;. From (4.6) we have

W.[z2,y2] — We[z2,y2]
=Tz, (Q7(§) — Q" (2)y2] + 2(z, Q7 (2)y2 — y2) — &(z, Q7 (§)y2 — y2)-

Let Tr = T;/I%(I + iMF)Tllr/}% be the representation of the type (1.1) of the

Friedrichs extension Ty, where Ty is the "real" part of T. From the relations

Tlg] = Tlp, ¢] = ((I +iMp)THp o, Trlp o)

= Alp] = (T +iM) A%, A% 0), ¢ € DIA]

it follows that T;/R2 p= ilA}z/Qcp, where 4 is an isometry from H; onto T}I,/I% D[A].
Hence,

Tlz, (Q*(€) — Q*(2))y2] = ((I +iMp) Tz, UAH (Q*(€) — Q*(2))y2)
= (€ — 2)((I +iMp) T2 2, UAY (A" —2) (A" —E1) 'yo).
This yields that the function W, [z, y2] is holomorphic on z in p(A).

Let us show that operators (W,)r = (D — C(A — zI)"'B — zI), forms in
p(A) a holomorphic family of the type (A). At first, we note that the equality

(W,)p = Wg — 2I —2C(A — 2I) H(Q* + 2Y) (4.7)
holds. In fact by the definitions of operators @* and Y for every g € D(W) = Dy

we have
(W — 21 — 2C(A — 2I) " H(Q* +2Y)g
=(B-—CA™'B—2I—2C(A—2I)"'A"'B)g
=(D-C(A—2I)"" —2I)g = W,g.

It follows that (4.7) holds on D(W) = Dy. Let g € D(Wp). Then there exists

a sequence {gn} C D(W) such that

lim g, =g, lim (W(gn —9m),9n — gm) = 0.

n—00 n,m—00
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For every h € D[W] we obtain

lim (Wgnah) = (WFgah)a nli)rfolo(Wzgnah) = ((WZ)Fga h)-

n—oo
For the sequence {g,} we also have li_)m Y g, = Yg. Therefore,
((WZ)F97 h') = lim (Wzgna h) = lim ((W —zl — ZQ('Z)(Q* + ZY))gn, h)
n—oo n—oQ o
= (Wp — 2I — 2C(A— 2I)"(Q* + 2Y))g, h).
Thus, (4.7) is true. Let g € D(Wr) and &,z € p(A). Then from (4.7) we obtain

(We)rg — (W2)rg = (2 — g + (2Q(2) —€Q(€))(Q" +2Y)g
=(z-8g+(-QR)(Q" +2Y)g +2(Q(2) — Q)Q" +2Y)g
= (2 =g+ (z = Q()(Q" +2Y)g + 2(z — §)Q(2)(A — &) (Q" +2Y)g.
)

It follows that the vector function (W,)gg is holomorphic on z in p(A). |

5. Bounded sectorial block matrices

Let A= A%Q(I + iM)A}Q/2 € L(H1) be a bounded sectorial operator with the
vertex at the origin, C' € L(Hy,Hs) and let S = A+ C : Hy — H. In this case
we have Agr = (A + A*)/2. In accordance with [4], the operator S has bounded
m-sectorial extensions in H with the vertex at the origin if and only if

R(C*) C R(AY?). (5.1)

Let (5.1) be satisfied. Then the von Neumann-Krein extension of S is a bounded
operator and takes the form [4]:

Sy = SPy + (AYX(I +iM) + X3) (I —iM) " X, Py, (5.2)

where X € ,C(HQ,R(A)) is an operator connected with C by the relation C* =

Aiz/ZXo. Relation (5.2) can be rewritten in the form

Sy = SP + (AA*7'C* + CA*'C*) P
or in the matrix form with respect to the orthogonal decomposition H = H; @ Hs:

A AA*_lC*]

Sy = [
where by definition

AATLCF = AT +iM)(I —iM) ™ Xy, CA*'C* = X3 (I —iM) ™' Xo.
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From (5.2) it follows the equality
IS¥fI* = |44 Pof + A A O Raf ||, f e B,

where Syg = (Sy + Sy)/2 is the real part of Sy and AY’A*1C* =
(I —iM)~1Xy. Therefore,

S\p=Us(AY’ P+ A*A*1C*Py),

where Up is an isometry from R(A) onto R(Sy). Hence, we obtain
SNif = (A" + CAT AY*)Us £, f € R(Sw). (5.4)
As was shown in [6], the relation
T = Sy + (W + 252X P, (5.5)

establishes a one-to-one correspondence between all m-sectorial extensions of S

with the vertex at the origin and all pairs <W,X ), where W is an m-sectorial

operator with the vertex at the origin in the subspace Hs and X : D(W) — R(Sn)

is a linear operator satisfying the condition ||Xh“2§ 52 Re (Wh,h), h € D(W)

with some ¢ € [0,1). Moreover, T is bounded if and only if W is bounded in Hy.
Using (5.4), we can rewrite the relation (5.5) in the form

T = Sy + WP +2(4> + CA™ 4)Y P
or in the matrix form

A AAICr 1243y
C CA™LC* +20A7 4y + W |’

(5.6)

where Y : D(W) — R(A) satisfies the condition ||Yh||2§ 62Re (Wh,h), h €
D(W) with 6 € [0,1) and CA~1AY? = Xg(I +iM)~!. From (5.6) it follows that

A Bj. . . S
T= ] is a bounded sectorial operator with the vertex at the origin if and

only if(/jcheDfollowing conditions are fulfilled:
L R(C*) CR(4{"), R(B) C R(AY");
2. D — CA™'Bis a bounded m-sectorial operator in Hy with the vertex at the
origin;
3. ||A5"/*(B— AA*"'C*)h||’< 482 Re ((D — CA™'B)h, h) for all h € Hy and
for some & € [0,1), where CA~'B := (A;;/Qc*)* (I+iM)1A;'B.
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Let Dr = (D + D*) /2 be the real part of D. The next theorem gives a criterion
of sectoriality by means of Schur complements of the block operator matrix T'
and its real part Tg.

Theorem 5.1. Let A € L(H,) be a bounded sectorial operator with the vertex

at the origin. Then the following conditions are equivalent:

(A) T = [é IB;] s a bounded sectorial operator with the vertex at the origin in

H = H{ ® Hy;
(B) R(C*), R(B) C R(AY?), 4Dx — (45%(C* + B)) (45"7(C* +B)) > 0

and

. { |((D—CA'B)f, f)]
4(Drf. f) - |45 "*(C* + B)f||

Proof. (A) = (B). Let T be a bounded sectorial operator with the
vertex at the origin. Then R(C*) C R(A}%/Q), R(B) C R(A%Q), its real part
Tr = (T + T%)/2 is a non-negative bounded selfadjoint operator and has the
matrix representation

> f€H2}<OO. (57)

[ 4 (C* + B)/2
Tr = [(0+§*)/2 o ]

According to the generalized Silvester criterion [17], it follows that
4Dp — (C + B*)AR'(C* + B) > 0.

In addition, the operator D — CA !B is a bounded sectorial operator in Hy and
|45 (B — AA*=1C*)h||*< 462 Re ((D — CA™'B)h,h) for all h € Hy and some
d€10,1).

Let X = (C* + B)/2. Then

B— AA*1C* = B — (24 — A A*1C* =2X — 24RA*1C*,
D—-CA'B=D-CA'2X -C*=D+CA'C*-2047'X.
Hence, for all A € Hy we obtain
Re ((D — CA™'B)h,h)
= (Drh,h) — || A5 P XR|*+|| A2 A 0 h — AR XA 9

From the inequality

145> Xh — A Ao nl?
< (|0 h|*~[| 4z " Xh|*+]| A 4 C*h — A5 Xh||?)
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and in view of 0% < 1 we have
| AR Xk — AP 4= crn|*< k(|| A"~ | AR XA "),
where k2 = §2/(1 — 62). Tt follows
DRI~ AR X
<Re ((D—CA™ B, ) < (1+ k) (| DRI~ | 45> xn]*).

Thus the condition (5.7) is fulfilled.
(B) = (A). From (5.7) it follows that

(P~ CA™' B), h)|< m((Drh,h) - || 45 X0]*)

for all h € Hy. Since Re ((D — CA™'B)h,h) < |((D — CA™'B)h,h)|, from (5.8)
we obtain m > 1 and
|145"2(B — AA*7 C*)h||*= 4| A> A C*h — AR X b
= 4Re (D — CA™'B)h,h) — 4 ((Drh, h) - || 45> Xn||")
<4 mT_l Re ((D— CA 'B)h,h).

Consequently, the operator T is sectorial.
Note that from (5.8) and (5.7) we have

|((D~CAT'B)h, ) |< m ((Drh, b)~|| A5 XB||") < mRe (D-CA™ B)h,h).

This means that the operator W = D — CA™!B is sectorial with the vertex at
the origin in Hj. m

6. Examples

In this section we consider applications of previous results to the systems of
differential operators.
0
6.1. Let Hy = Hy = L?[0,1] and let W,}[0,1], W3[0,1], W2[0,1] be the
standart Sobolev spaces. Put
a? 04 2 2
A==, D(A) = W0, 1] nWE0,1] = {f(z) € WE0,1]: £(0) = £(1) =0},

B=C= %, D(B) = D(C) = W,0,1],

(Dg)(z) = b(z)g(), g(z) € L?[0,1],

564 Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 4



On sectorial block operator matrices

where b(z) € L*[0,1] and Reb(z) > m|Imb(z)| a.e. with m > 0. Thus, for

A B
T = [C’ D] we have

o3 = o) so=s-o

The operator A is selfadjoint positive definite and
L 04
Alu,v] = / u (z)v'(x)dz, u,v € D[A] = W4[0,1].
0

The Green function of the operator A takes the form

[ s(1—12), s<u,
G(z, ) _{ (1—-58)z, s> .

It follows that

1 1
CA 1 f = ds — d 2
f /xf(s) 2 /0 s (s) w,{eL[O,u,
*g=(CA )*q = ds — d 2
Qg = (CA Yy /Og<s)s x/o o(s)dz, g € 1[0, 1,

1 T
A'Bg =4 / g(s)ds - / g(s)ds, g € WL[0,1],
0 0
1 x
Vo= 547 B (©A))g=a [ gls)do— [ g(s)ds, g € WHO.1)
0 0
1

CA™'Bg = —g(z) + i g(s)ds, g € W,0,1],

Wg = (D — C'A*IB)g = (b(z) + 1)g(z) — /0 g(s)ds, g € W4[0,1],

1
0

Re(Wg.) = [ (Rebs) + Dlg(o)ds — | [ ' g(s)ds

Hence, the operator W is a densely defined bounded sectorial operator with the
vertex at the origin. From (2.8) we obtain
1
/ g(s)ds
0

1 2
pYgl = /0
plYgl < Re(Wg,g) forall g(z) € W,0,1].

2 1
dz = / lg(s)[2ds —
0

/ (s — gla)

It follows that
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0

Since R(Q*) C W3[0,1] = D[A], in accordance with Proposition 4.2 we obtain
that the operator T is accretive and is sectorial if and only if the following condi-
tion is fulfilled:

[ 1ateyeas - | gteyas|

for some k > 0 and all g € L2[0, 1]. In particular, it will be true if Reb(z) > ¢ > 0
a.e. Since W is densely defined and bounded, the operator T' has a unique
m-accretive extension which coincides with its closure T:

< kRe /0 b(s)|g(s)|ds

D(T) =
{ )=k gff();g”” - fowg(s)ds] 0(a) € WH0,1] NWED,1]g(a) € Lao, 1]},
— — xf s)dz — [ g _ —¢" ()
T oy " ] La'(az) + (b(w) + Dg(a) — [ g(w)dx] |
6.2. Let again H; = Hy = L?[0,1] and
d2
A=——sp,
D(4) = {f(z) € W3[0,1]: (0) = B(0), F(1) =0}, Reft >0,
d d
=& PP) = {f@ ewio.11: £(0) =0}, € = =, D(C) = W3[0, 1],
p=-L D(D) =W, 1.

dz?’

As was shown in [18], the operator A is coercive and m-sectorial. Clearly, for
the associated closed form and its domain we have

{f@) emi, 1J:f<1>=o},
Alf.g = /f d:v+ﬁf()(0), f.9 € DIA].

D[A]

The Green function of A is

[ B+)A—a)(1+p) ", s <u,
G9) _{ B+a)(1—=s)1+p)7, s> .

Therefore, for g € D(B) we obtain

A1Bg = /OIG(:E,s)g'(s)ds - ﬁ (ﬁ /zlg(s)ds _ /Omg(s)ds —I—:v/olg(s)ds)
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CAlzfg = o)+ 1 [ ol s ofs) € W0, 000
Yg= g(A*IB —(CA™Y))g=

1 ) 1 T 1
o (092400 [ ot)as— 1w [ ool + @+ Bale [ ate)as).

g9 € D(B),
where g = Re 3,
1
Wy = (D= CA " Blg = ~"(0) +9(0) — 135 | a(s)ds.
(Wg,9) / lg'(s |2ds—|—/ lg(s IQdS—ﬁV ds 961/%/3[0,1]-

It follows that

1 / 1 1+ 1 2
Re (Wg,g) = /0 19/ (s)Pds + /0 |g<s>|2ds—ﬁ /0 g(s)ds

B 1 / 1+ B 1 1
= [ e+ (/0 o)Pds—| [ ao)ds

|ﬁ|2 + Br
|1+,8‘2 / | | dS’

1
Imp / o(s)ds|

1+
0
Hence we obtain that the operator W defined on W3[0, 1] is closed coercive and
sectorial and the semiangle of W is smaller than /4.
Let us calculate the quadratic functional p[yp] defined by (2.7). For ¢, f €
D[A] we have

)

m (Wg, g) =

1
A1) = [ ¢ @F @z - pOFO) + o070,

Let ¢ = (1 + B3)B L. Then cg = Rec = (|82 + Br)|B] 2. Represent c in the form
¢ = cg(1 + ib), where Imb = 0, and note that

. 1+ Br
1—|—2b2cR—1:7.
| | 1BI? + Br
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Further we have

1
Redp—£.f1= [ /@) de = 1¢0) / ¢/ (2) — f'(2)Pda
10(0) — FO) + 1+ iblZerlp(0)]? — el £(0) — (1+ zb) o).

It follows that

1
ReA[2cp—f,f]S/0 Iw'(w)|2d$+w1|fj7+ﬁglz

Choosing fo(z) = p(z) —ibp(0)(z — 1), we get for f(x) = fo(x) the equality

©(0)|? for all f(z) e DIA].

! 1
Redfe— fofol = [ 1¢/@) e+ P o)

Hence for all ¢ € D[A], we obtain

utol = sup{Re iz~ 1,11, £ €T} = [ 1P+ P ooy,

Using the expression for the operator Y, we obtain for g(z) € W4[0,1], g(0) = 0:

(V9)'(a) = ~gla) + 0% [ gle)as, (¥a)(0) = IBF + Br | ot
1+ 0Br

T+ 6P 1+ 7
1 1 1
el = [ loGe)Pas + / oeis| 2| [ gtepas

1+ 8- (16]* + Br) )2ds — 1+ | [*
/0 /|g ) 2ds —/Og(s)ds

B2 +Br 1+ B 1+ 57
Now we note that the operator —-25 defined on I/V2 [0,1] is positive definite (with
the lower bound 72). It implies an estlmate
1 2
/ g(s)ds
0

! ! 1+ Br
! 2 2
/0 lg'(s)[*ds > m (/0 lg(s)|"ds — TENCE

0
for some m > 0 and all g € W3[0, 1]. This yields

2 2

(14 Br)*
|1 +ﬁ|4

2

0
ulYg) < 0°Re (Wy,9), g€ W20,1]
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for some ¢ € [0,1). In accordance with Proposition 4.2 we get that the operator

T given by the block matrix T = [é IB;] on the domain

D(T)
- { [ﬁ] : f(@) € W20, 1] nWH0,1], 7(0) = BF(0), £(1) = 0,9(z) € W3[0, 11}

is sectorial in H = L2[0,1] ® L?[0,1] with the vertex at the origin. Its the
Friedrichs extension is defined by the pair (WF, Yp), where W is the Friedrichs
extension of the operator

1

Wg=(D—-CA'B)g=—g"(z)+g(z)— ﬁ ; g(s)ds, g€ D(W) = I/%/%[O, 1]

and Yp is the continuation of Y[D(W) on D(Wg) preserving the condition
ulY g] < 6°Re (Wg,g). It is easy to see that

1
T 1+8
?Fg

Wpg = —¢"(z) + g(z) g(s)ds, g € D(Wp) = [/%/%[O, 1] nw3[o,1],

Y
1 x
« ((W 1 Br) / g(s)ds — (1 + fr) /0 g(s)ds + (1 + Br)z /0

1

g(s)ds) .

Since the operator W is sectorial coercive, the von Neumann—Krein extension Wy
of W is defined as follows [4-9]:

. 0 .
D(Wy) = D(W)+Ker W* = W20, 1]+ Ker W*,
Wn(g+ ) =Wg, g D(W), ¢ € Ker W*.

Since
1

1
W*h = —h"4+h— —— [ h(s)ds, h € DIW*) = WZ[0, 1],
1+8Jo

we get

e—1

KerW* = {cl<em+%) +cz(e_$+ 3 ), c1, Co E(C}.

The corresponding extension Yy of Y| D(W) takes the form

~ ~ 0
D(Yn) =D(Wn), Yn(g+¢) =Yg, g€ W5[0,1], ¢ € Ker W™
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According to Theorem 2.6 the pair (WN,?N> defines the von Neumann—
Krein m-sectorial extension of the block operator matrix 7. Using the ap-
proach suggested in [7-9] all m-accretive and m-sectorial extensions of W can
be parametrized.
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