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For the spesial class of quasilinear operators a topologocal construction
is described with the help of which existence theorems of normalized eigen-
vectors may be obtained. The construction is based on utilization of an
intersection number of two Hilbert submanifolds one of which is generated
by the given operator and another is anchanged.

Introduction

For the first time an existence of the countable set of normalized eigenvectors
was proved for some nonwvariational quasilinear boundary eigenvalue problem in
L.A. Lusternik’s paper [1] by the original method of parametric continuation. The
Lusternik theorem and following results refer to the case, when an associated (in
a certian sense) linear problem has simple eigenvalues only (Ch. Cosner’s paper [2]
is devoted to the investigation of this case). Our works [3-5] contain results analo-
gous to [1] for quasilinear boundary eigenvalue problems, for which an appearance
of "multiple" eigenvalues is possible. In this paper a topological construction is
described with the help of which theorems of Lusternik’s type may be obtained for
the spesial class of nonvariational infinite-dimensional abstract operators. (The
finite-dimensional case is described in [6-8].) The construction is based on uti-
lization of an intersection number of two Hilbert submanifolds (the case when one
of submanifolds is finite-dimensional is described in the survey [9]). In our situa-
tion we defined such intersection number by its "finite-dimensional invariance":
a finite-dimensional approximation of one submanifold induces the natural finite-
dimensional approximation of the other submanifold without changing of this
number. We shall introduce the intersection number in a way analogous to that
of M.A. Krasnoselskii [10] used in the degree theory of a completely continuous
vector fields.
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Intersection number and eigenvectors of quasilinear Hilbert—Schmidt operators

1. The basic notions and notations

Let (-,-) be a scalar product in the real separable Hilbert space H; let u € H
and S = {u : ||lu||g = 1}. Let L be the Hilbert space of self-adjoint Hilbert—
Schmidt operators A : H — H supplied with the absolute operator norm:
[|A[|]> = 3, ||A€;l|%, where {e;} is an arbitrary orthonormal basis. It is known
[11] that the space L is the completion by this norm of the subspace of self-adjoint
operators with finite-dimensional image, characteristic values y of operator A € L
are real (a characteristic value is the inverse value to an eigenvalue), the set of
all characteristic values of operator A € L is at the most countable, characteris-
tic values have finite multiplicities only (moreover, the algebraical multiplicity is
equal to the geometrical one), zero may not be a characteristic value, the charac-
teristic values of the same sign are arranged in ascending order of their absolute
values (with calculation of multiplicities) and it is possible that they have the
limit points plus (minus) infinity. By L, C L denote the open connected subset
of operators having positive characteristic values with number n.

We consider the vector space C = C(S, L) of all completely continuous map-
pings A: S — L, i.e., Ais continuous mapping and its image I'm(A) is compact in
L. The space C is Banach space supplied with the norm ||A||c = sup,cs ||A(u)]|
[10]. By C, C C denote the open connected subset of operators A such that
Im(A) C L,. We note that if A € Cy,, then A€ C; foralli=1,... ,n—1.

We shall investigate a quasilinear normalized eigenvectors (n.e.v.) u and cha-
racteristic values (c.v.) 7 problem

YA(uu=u, ues, yeER. (1)

Examples. 1). A mapping A(u) = A is a constant operator. In this
case problem (1) is the self-adjoint eigenvector problem.

2). A mapping A(u) is an integral operator with a symmetrical bounded
kernel. In this case the mapping B(u) = A(u)u is the special Urison operator
[10]:

1
A(u)u = /K(x,u(z);z,u(z))u(z)dz,
0

where a function u € Ly(0,1) = H, a function K(z,a;z,b) is continuous on
(0,1) x R x (0,1) x R, |K| < const, and K(z,a;z,b) = K(z,b;z,a).

In Item 5 we shall consider a quasilinear boundary eigenvalue problem, which
is reduced to problem (1).

Lemma 1. Let A € C. Then the mapping
B:S— H, B(u):=A(u)u (2)

is completely continuous.
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Proof Let {u;} C S be an arbitrary sequence. By virtue of the com-
plete continuity of the mapping A, we can choose from the sequence {A(u;)}
a convergent subsequence (we shall retain for the latter the earlier notation):
A(u;) — A € L as i — oo. Since the operator A € L, A is compact. Therefore
we can choose from sequence Awu; a convergent subsequence: Au; - u € H. We
have ||B(u;) —ullg < [|A(ui)ui — Auil|m +[|Au; —ul[g < [[A(uwi) — Al [Juil|g +
||Au; — u||g — 0. Thus B(u;) = u as i — oo. |

Nonlinear eigenvector problems yB(u) = u with a completely continuous map-
ping B are investigated from different points of view [10]. If an operator B has
form (2), it is reasonable to say that B is the quasilinear Hilbert—Schmidt op-
erator. Due to B has a spesial form (2), we shall introduce a number and a
multiplicity for c.v. of problem (1) analogous to that for the linear self-adjoint
problem. We note that the condition of complete continuity of mapping A (which
we used in the proof of Lemma 1) cannot be discarded: there exist continuous
mappings A : S — L, for which the mapping B(u) = A(u)u is not completely
continuous. For instance, define for any u € S the mapping A(u) = 7, as orthog-
onal projection onto u-axis, that is myv = (u,v)u for v € H. Clearly, that the
one-dimensional operator 7, € L. But the mapping B(u) = myu = (u,u)u = u is
an identical mapping on S, which isn’t completely continuous as it is well known.

A pair (vy,u) is called a normalized solution (n.s.) if it satisfies problem (1).
If (7%, u°) is an n.s., then 4 is an c.v. of the linear problem

YAu=u, u€S, (3)

where

A= A@°) € L. (4)

We note that among of normalized eigenvectors of linear problem (3), (4)
which correspond to the c.v. % the vector u’ can be found. We interest of
normalized solutions such that its characteristic values are (for determinancy)
positive only.

Definition 1. Let (4%, u%) be an n.s. of nonlinear problem (1) and let v° > 0.
The c.v. 70 receives some number and multiplicity as an c.v. of linear problem
(3), (4)- We assign the same number and multiplicity to the n.s. (v°,u°) and its
elements. The n.s. (Y°,u°) and its elements are called simple (m-multiple) if ~°
is simple (m-multiple) as an c.v. of linear problem (3), (4).

R em ar k. Certainly, Definition 1 extends to an n.s. of linear problem

(3). A pair (7°,u%) itself dosn’t contain an information about its number and
multiplicity. It receives these properties as the n.s. of the concrete problem (1).
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Definition 1 is introduced into consideration in [12]. The analagous definition is
given in [2].
Let us define the basic objects in our investigation: 1) the subset of pairs

P={p=(A,u) € L xS :there exists 7 >0, such that yAu=u}; (5)
2) the mapping "graph A"
GrA:S—LxS, GrA(u)=(A(u),u). (6)

We note that the set P does not depend on a mapping A. Since an c.v. is finite-
multiple, we assign the pair (n,m) = (the number of v, the multiplicity of 7) to
each point p € P. By P(n,m) C P denote the subset of all points with number n
and multiplicity m. It is clear that P = Uy ,, P(n,m), where n,m > 1. If m =1,
then we say that the point p € P is simple. By P; = UpxoP(n,m) denote
the subset of all multiple points with number n. We shall need the complement
Ry, = (S x L)\P; and the finite intersections R(¢,) = M- R;. By m : LxS — L,
where 71(A,u) = A denote the natural projection onto the first factor. Next
assertian describes the properties of the introduced sets.

Lemma 2 [13]. The subset P C Lx S is a connected C*-submanifold modeled
on the space L. Each of stratum P(n,m) is C*®-submanifold of the manifold P,
codimP(n,m) = m(m — 1)/2. In particular, strata P(n,1), which consist of
simple points are opened in P. The restriction m : P(n,1) — L of projection m
to the stratum of simple points is a local diffeomorphism.

Now we formulate the obvious theorem, which explains the role of the manifold
P and the mapping GrA in the finding of n.e.v.

Theorem 1. A vector u € S is a n.e.v. with a positive c.v. of problem (1)
iff (GrA)(u) € P. In this case the number and the multiplicity of the n.e.v.

are defined by the indices (n,m) of the stratum P(n,m) such that the point
(GrA)(u) € P(n,m) C P. [ ]

Henceforth the following notions shall play a basic role.
Definition 2. We say that a mapping A € C, and corresponding problem
(1) are n-typical, if Im(GrA) C R,. We say that a mapping A € C, and

corresponding problem (1) are (< n)-typical, if Im(GrA) C Ricp).

By clp (Ctip

( <n)) we denote the set of all n-typical ((< n)-typical) mappings.
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Definition 3. We say that two n-typical mappings Ay, A1 € CH¥  gnd
corresponding problems (1) are n-homotopic, if there exists a continuous mapping
(n-homotopy) G : [0,1] — CE? such that G0) = Ay u G(1) = A;. We say
that two (< n)-typical mappings Aoy, A1 € Cfgn) and corresponding problems (1)

are (< n)-homotopic, if there exists a continuous mapping ((< n)-homotopy)
G:[0,1] — cf’g’n) such that G(0) = Ay u G(1) = A;.
2. The finite-dimensional case

Our reasonings are founded on the reduction to a finite-dimensional case,
therefore we shall need some facts from the theory of finite-dimensional problems
of the form (1) (the details can be found in |7, 8]). Introduce following notations:
let {-,-)x be a scalar product in the oriented space R¥, y = (y',...,y*) € R,
Sk~ = Ly : (y,y)r, = 1}, L®) be the oriented space of real self-adjoint operators
A®) on R¥ (dimL%) = (k+1)k/2), and C%*) = C(S*~1, LK) be the Banach space
of continuous mappings supplied with the usual norm of a uniform convergence.
Let A®) ¢ C®). We consider a finite-dimensional quasilinear eigenvector and
characteristic value problem that is analogous to problem (1):

yA® (y)y =y, ye S, yeR. (1, (k))

The positive caracteristic values of any operator A®) ¢ L(*) are arranged in
ascending order with calculation of multiplicities. After that Definition 1 is carried
over to an n.s. (v,y) of problem (1, (k)) unchanged. The set P*) (later the

subsets P(k)(n,m),Pék)’* c P%)_ the subsets Rgc),RE?n) c L® x §k=1 and
(k)

the projection 7,"’) and the mapping GrA®*) are defined analogous to (5) and
(6), respectively. For these objects the statements of Lemma 2 and Theorem 1
remain true. Moreover, the finite-dimensional P¥) is orientable. The orientation
of P%) induce the orientation in the open subset P*)(n,1) (n = 1,--- , k), ie.,
in the stratums consisting of simple points. On the stratum P()(n,1) the local

(k)

diffeomorphism 7; "’ either retains the orientation at each point p (that is the
derivative operator D7r§k) takes a right basis for the tangential space TpP(k) (n,1)
to a right basis for the space L(k)) or interchanges one at each point. As has
been shown in [8] the alternation takes place: if on the stratum P®)(n,1) an
orientation is retained (changed), then on the next stratum P®)(n +1,1) it is
changed (retained). We shall agree to orient the first stratum P*)(1,1) (at the
same time the whole manifold P*)) such that the local diffeomorfism 7r§k) retains
the chosen orientation of the space L) at points p € P(k)(l, 1). Definitions 2
and 3 are carried over to the mapping( ;4(’“) and problem (1, (k)) unchanged. We
k),tip

note the coincidence of the subset: C( <Go-1)) = C((?k’;ip c c),
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Lemma 3 [8]. For anyn =1,... ,k —1 the subset C((ggip c C%) of (< n)-
typical mappings is open and dence.

By Lemma 3, it has sense to work with (< n)-typical mappings AK) only, i.e.,
to seek a simple n.s. Since dimP®)(i,1) = dimP®) in the product L*) x §k—1
the codimensional codimP®)(i,1) = k — 1 = dimS*~' (Lemma 2). Due to this
reason and by virtue of the compactness of sphere S¥~1, for any natural i < n
the oriented intersection number Xz(-k) = Xz(k)(A(’“)) = x(P®(i,1), GrAK)) of the
stratum P®) (i, 1) with the mapping GrA®*) is defined. This intersection number
we shall call the intersection number of the (< n)-typical mapping A®) and at

the same time the intersection number of the corresponding problem (1, (k))). By
Theorem 1 and properties of the intersection number, if ng) # 0, then problem
(1, (k)) has at least one simple n.s. with number i. If a mapping GrA®*) is in
transverse position with respect to the stratum P%)(i,1) (this case is typical for

smooth mappings A(k)), then a number of n.s. is at least | Xz(k)|.

Example [8. A®)(y) = A®). In this case Xz(k) = (-1)"12.

Let a mapping A% be (< (k — 1))-typical. Here all of intersection numbers
XZ(-k) (1=1,...,k) are defined. Between them and the Euler characteristic there
exist a linear dependence:

Lemma 4 [8]. Let A®) ¢ C((i)(’;ifl)). Then the sum of all intersection numbers

is equal to the Euler characteristic of the sphere S¥™1, i.e., the sum ng)-l-. . .-I—X,(ck)
is equal to 2 if k is odd and one is equal to 0 if k is even.

2’5@ andn < k—1.

We shall call the intersection n-vector of the mapping A% (and at the same

time of the corresponding problem (1, (k))) the integervalue n-dimensional vector

70 =500y = (¢, ).

Definition 4. Let a finite-dimensional mapping A®) ¢ C((

With the help of introducing intersection numbers the set of typical problems
can be homotopically classified.

Theorem 2. 1) The intersection n-vector Y(k) of problem (1,(k)) may take

(<n)
on all values in the group Z".
2) The intersection n-vector of a constant mapping A® (y) = A®) ¢ C((g;gip
is equal to (2,—2,...).
3) Two of the (< n)-typical problems (1,(k)) are (< n)-homotopic iff their
intersection n-vectors coincide.
4) If an intersection number ng)(A) # 0, then the problem (1, (k)) generated

by the mapping A% has at least one simple n.s. (i, ys) with the number i.
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Proof Thecase n =k — 1 was considered in [8]. The proof of common
case is by the same method. [

For the passage from the finite-dimensional case to the infinite-dimensional
one we need two lemmas.

()

Lemma 5. The intersection n-vector X(<n) does not depend on the choice of

orientations in the factors of the product LX) x k=1,

Proof Under the substitution of an orientation in a factor of the product
L®*) x §k=1 the substitution of an orientation in the manifolds P®)(3,1) (i =
1,...,n) and Im(GrA®) happens automatically. [ |

Let R* ¢ R! and let {e1,...,ex,...,e} be some orthonormal basis for R’
adapted to the embedding. By 7* denote the orthogonal projection onto sub-
space R¥. Consider a mapping A® : =1 — L®  that the identity A® (y) =
78 AW (y)7* takes place on §=1. T.e., the image Im(A®) c L) and in the chosen
basis the mapping A® has a block diagonal matrix:

AD (y) = (A(k())(y) g) ’ (7)

where A®)(y) = (AD(y)es e;)) (4,5 = 1,...,k) is symmetric k-dimensional
matrix. It is clear that the restriction of the mapping AW to §k-1 = S-1NRE js
the mapping A®) : §¥=1 5 L(¥) We shall call the subspace R¥ and the shpere
S*%1 invariant for a mapping A®) of the form (7).

Lemma 6. Let a mapping AY have the form (7) and let A®) be the restriction
of a mapping AD to the invariant sphere S*=1. If AR ¢ C(?ﬁgw, then AW ¢

(
(1) tip <~ 1)y — (k) k
Ol Xgny(A) = X(ny(AM).

P roof. The first assertion is obvious. To prove the second assertion, it
suffices to check one for any component of intersection n-vector, for example, the
first. With the help of the transversality theorem [14] we substitute the mapping

GrAW® for a near smooth mapping (GrA®) : §=1 — §=1 x L) that is in
transverse position with respect to the stratum P®*)(1,1) (the mapping (GrA®)
is not a graph of some mapping from S*~! into L(k)). By ng) : L) x §i-1 5 gi-t
denote the natural projection onto the second factor. Then, at first, the mapping

AV §1 5 L0 c L0, 4D = 20 (Gra®) - (x) . (Gra®))~!
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is near to the starting mapping A®) (see [8]) and one is of the form (7). By

this reason and by virtue of Lemma 3 for the mapping A®) all conditions of

Lemma 6 are satisfied. Secondly, the graph of the mapping A(!) coincides with

the image under the mapping (GrA®) as a set, therefore one is in a transverse
position with respect to the stratum P®*)(1,1) in the product "1 x L*) Tt
is not difficult to check that this graph is in transverse position with respect to
the stratum P®(1,1) in the product S*~! x L®). Now, there exists the finite

set of points y; € S¥~!1 C S§~1 such that the conditions pgl) = (Z(T)(yi),yi) =
Gr(A®)(y;) € PO(1,1) are true, and on the sphere S'~! other points satisfying
these conditions do not exist. Note that for the restriction to the invariant sphere
the analogous conditions p(k) = (A((sk) (Yi), i) = Gr(Agk))(yi) e P®)(1,1) are

i
true too. We shall construct an orienting tangential basis for P%)(1,1) at the
z(-l) and an orienting tangential basis for the graph of the mapping A®
0

at the same point p;’. Coordinates of all basis vectors mention above form the
(dimL® + [ — 1)-dimensinal matrix M(p(l)). The sign of detM(p(l)) defines the

] )

point p

intersection number at the point pz(-l). (The matrix M (pgk) ) is defined analogously,
(k)

it is formed by an orienting tangential basis for P(¥)(1,1) at the point p; ~ and

an orienting tangential basis for the graph of the mapping A®*).) It is known
[14], that the sum up these intersection numbers over all the values i gives the

0

intersection number x3;”. In order to construct an orienting tangential basis for

P(l)(l, 1) at the point pgl) make use of the fact that near a simple point pgl)
the manifold P®)(1,1) is the graph of the mapping y = y(A®), where y is the
normalized eigenvector corresponding to the first of c.v. of operator AW, We

shall choose the basic vectors of the space R! in a special way: e; =y, €2,... ,€
are orthonormal eigenvectors of the fixed operator A(!)(y;). Let us now make use
of the wellknown formulae from the perturbation theory for the coordinates of
eigenvectors y = y(A®) in the basis {y;, e, - }: Byl/aal,l =0;if1 <y <l
then 0y’ /0a1; = v17vj/(v; —1); if 1 < ¢ <, then 0y’ /Oay; = 0. To write an
orienting tangential basis for the graph of the mapping Z(l/), it remains to note
that by the form of the operator A = A (y) (see (7)) there take place the
equalities: Oa,, /0y’ = 0, if ¢ > k. When the matrix M (pgl)) is constructed it is
easy to make sure that detM (pgl)) = detM (pgk)). ]

3. Typical mappings and finite-dimensional apparoximation

By I'),(A) denote the set of all c.v. of problem (1) that have number n, and
by Up(A) denote the set of all n.e.v. of problem (1) that have number n. We
shall prove the theorem about a priori estimate.
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Theorem 3. Let a subset T C C, be a compact subspace. Then: 1) the
following lower and upper estimates take place

0 < inf T'y(4), sup ['p(A) < oo; (8)

2) the subset UaerUp(A) C S is a compact subspace.

Proof. Theassertion is a direct consequence of the continuous dependence of
characteristic values under perturbations of operators A € L and the compactness
of images of these operators. ]

Let R*¥ C H be an arbitrary subspace. As previously denote by «* the or-
thogonal projection onto this subspace. Let {e;};2; be some orthonormal basis
for H, which accorded with the chosen subspace, i.e., {e1,... ,ex} is a basis for
R*. A mapping A is called image-k-dimensional (image-finite-dimensional) and
is denoted by Al*] if the following condition is true: A(u) = 7% A(u)7*, i.e.,

AlF] (u) = (A(k) (u) 0) : (9)

where A®)(u) = ((A(uw)ei,ef) (i,5 = 1,...,k) is a symmetric k-dimensional
matrix (compare with (7)). Similar to the case finite, we shall call the subspace
R* and the shpere $¥~! are invariant for a mapping A¥]. If an orthonormal basis
is chosen, then by Ak} (u) := 78 A(u)n* (k = 0,1,...) we denote the image-k-
dimensional approzimation of an arbitrary mapping A.

Lemma 7. In the spase C image-finite-dimensional mappings of the form (9)
are dense. For any choice of an orthnormal basis {e;}32, the convergence of
k-approzimation takes place: A%} — A in C as k — .

Proof. It suffices to prove the second assertion. Let A € L. By the
definition of absolute operator norm, ||A — 7*A7*|| = 0 as & — oco. Now,
the assertion of Lemma 7 is the consequence of the compactness of the image
Im(A(S)) C L. ]

Theorem 4. The subset C;ipn) C C,, is open and dence.

Proof. By Definition 2, it suffices to prove the first assertion for the
subset CY? ¢ C,. Let the mapping Ay be n-typical. Suppose the contrary.
Then in C,, there exists a convergent sequence A1, A, ... = Ag of mappings that
are not n-typical. Hence there exists the sequence of pairs {(A4;(u;),u;)} € Px
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(¢t =1,2,...). By Theorem 3, from the sequence {u;} (i = 1,2,...) it may be
chosen a convergent subsequence u; — wug (for which we shall retain the early
notation). We obtain that (Ao(uo),uo) € P;. This contradicts the condition that
the mapping Ay is n-typical.

Let A € C,,. By Lemma 7, for any € > 0 there exists such kg that under
the condition k > ko the inequality ||[A — A¥}||c < € is true. Since the set
C,, is open, we shall choose such small ¢ that k-approximation A} e C,,. By
AK) . gk=1 _y (k) denote the restriction of the mapping A} to the invariant
sphere. By Lemma 3, in the space C*) of finite-dimensional mappings there exists
such e-perturbution Agk) : §5=1 5 L) that the mapping A®) + Aé’“) is (€ n)-
typical. Now, we shall define e-perturbation of the mapping At} Aik}(u) =0,
if [[rhull g < 1—e; AP () = (1/e)([n*ullr — 1+ )AL (b llmkul ), i 1 - e <
||[m*u|| < 1 (it is obvious that HAik}HC < ¢ ). Since the mapping Ak} + A i
image-k-dimensional having the form (9) and coincides with A%) 4 A® on k=1,
it is (< n)-typical. [

Corollary 1. Let G be (< n)-homotopy. Then there exzists such ¢ > 0 that

e-neithgbourhood of the image G([0,1]) belongs to C(ti<pn)- u

Since (< m)-homotopy relation is equivalence one, it partitions the set C(tg’n
into equivalence classes. We investigate the correlation between these classes an

image-finite-dimensional approximations. First, we note that if R* ¢ R*, then
automatically any image-l-dimensional mapping Al of the form (9) is an image-
k-dimensional mapping of the form (9) for any k£ > [. Therefore we can assume
without loss of generality that two image-finite-dimensional mappings take into
the same space L¥). Let two image-finite-dimensional mappings Ay] (1 =0,1)
are joined by (< n)-homotopy G(t), and there exists such subspace R¥ O R! that
for any ¢ € [0, 1] the operator G(t) = GI¥(¢) is an image-k-dimensional mapping.
(k] — 4l

In this case we say that the operators A; ;. are image-finite-dimensional

(image-k-dimensional) (< n)-homotopic.

Lemma 8. Ewvery homotopic class of (< n)-typical mappings contains image-
finite-dimensional mappings AF. If two image-finite-dimensional (< n)-typical
mappings Agk} (1 = 0,1) are (< n)-homotopic, then they are image-finite-dimen-

sional (< n)-homotopic.
Proof The first assertion follows from Lemma 7 and Theorem 4.

Let the mappings Agk] (t = 0,1) be connected by (< m)-homotopy G.
Consider image-finite-dimensional approximations of this homotopy (see (9)):
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G{m}(t) = 7™G(t)x™. Once m > k the equalities GIm}(0) = Al G{m}(1) = 4IM
become true. Hence G{™}(t) is the image-finite-dimensional homotopy joining the
mappings Agk] (1 = 0,1). By compactness of the image G([0,1]), it follows from
Lemma 7 and Corollary 1 that for any sufficiently large m the homotopy Gim} is

(< n)-homotopy. [ |

Lemma 9. Two image-k-dimensional mappings Agk] (1 = 0,1) are image-k-
dimensional (< n)-homotopic iff their restrictions Agk) to the invariant sphere

Sk=1 are (< n)-homotopic.

Proof Let image-k-dimensional (< n)-homotopy Gl join the mappings
AM. Then the restriction G*) of this homotopy to the invariant sphere is the

13
homotopy of the restrictions Agk) to be found.
Conversely. Let the finite-dimensional (< n)-homotopy G¥) join the restric-
tions Agk) of two image-k-dimensional mappings Agk] (¢ = 0,1). Let us extend
this finite-dimensional homotopy to an image-k-dimensional homotopy joining the

mappings Agk]. Consider two image-k-dimensional mappings
ko || ARk k k .
@WMZ{WuHZwumﬂwm mhu £

0elL, mhu = 0.

Obviously, the rectrictions of these mappings to the invariant sphere coincide with
the restrictions of the given mappings: DZ(k) = Agk)
with the introduced ones by the linear homotopies: Gz[-k](u, t) = (1—t)A§k) +tD§k),
(t € [0,1]). Since these linear homotopies are image-k-dimensional, they are

. Let us join given mappings

< n)-homotopies and do not change the restrictions AR, Now, we join the
K3

introduced mappings ng) by (< n)-homotopy, using given finite-dimensional
(< n)-homotopy G*):

mhu||GE) (nbu/||xkul|, 1),  7Fu #0;
@W%ﬂ={QEJ (whu/||*ull 1) Tt

It follows from Lemmas 8 and 9 that the investigation of classes of (< n)-
homotopic completely continuous mappings is reduced in the end to the investi-
gation of similar classes of finite-dimensional mappings.
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4. An intersection number and its properties

At first, consider an image-finite-dimensional (< n)-typical mapping A of the
form (9). This yields that there exists some (not unique!) finite-dimensional
subspace RF ¢ H for which the image ImA C L(*). As above denote by A®*) the
restriction of the mappig A = A to the invariant sphere S*¥~1.

Definition 5. We shall call the intersection n-vector X(<n)(A) of an image-
finite-dimensional mapping A (and at the same time of the corresponding problem

(1)) the intersection n-vector ngn) (A®)) of the mapping AK).

By Lemma 5, introducing vector does not depend on the choice of orientations
in the factors of the product L(¥) x §¥~1 Make sure that it does not depend on
the choice of an invariant subspace R* either. Let R" be an other subspace such
that ITmA C L{"). We take any subspace R!, such that R¥, R” ¢ R!. From

e (k _( -
Lemma 6 follow next equalities: ng)n)(A(k)) = ng)n) (AW) = ngn) (AM).

Now we give the main definition. Let a mapping A be (< n)-typical. By
Lemma 8, in the homotopic class of (< m)-typical mappings that contains the
mapping A there exsist image-finite-dimensional mappings Al¥).

Definition 6. We shall call the intersection n-vector X<n)(4) of

a mapping A (and at the same time of the corresponding problem (1))
(k)

(gn
A] that is homotopic to the given mapping A.

the intersection mn-vector Y )(A[k]) of any image-finite-dimensional mapping

We shall prove that the definition is correct if we show that the introducing
intersection vector does not depend on the choice of an image-finite-dimensional
mapping Al Let two image-finite-dimensional (< n)-typical mappings Az[k]
(# = 0,1) be (< n)-homotopic to the given mapping A. Then the mappings
Agk] are (< n)-homotopic to each other. By Lemma 8, they are image-finite-
dimensional (< n)-homotopic; let GI¥1(¢) be an image-finite-dimensional homo-
topy joining the mappings Agk}. By Definition 5, there takes place the equality:
YE?R)(AE-IC]) = ngn)(Agk)). Still the restriction of image-finite-dimensional (< n)-
homotopy G'¥!(t) to the invariant sphere S*~! is a finite-dimensional homotopy of

the finite-dimensional mappings Agk). Consequently yg’;)n (A(()k)) = yg?n)(Agk)).
The definition is correct. It follows from Lemma 7 and Theorem 4 that for
any orthonormal basis there exists such natural ky that the k-approximation
Al = ATk} where k > ko can be used as an image-finite-dimensional mapping
(< n)-homotoping to the given mapping A.

Let us describe the properties of the introduced intersection vector and its
coordinates x;(A) (compare with Theorem 2).

Matematicheskaya fizika, analiz, geometriya , 2002, v. 9, No. 4 615



Ya.M. Dymarskii

Theorem 5. For any natural n the next assertions are true.

1) The intersection n-vector X(<ny of problem (1) may take on all values in
the group Z™.

2) The intersection n-vector of a constant mapping A(y) = A € C
to (2,-2,...).

3) Two of the (< n)-typical problems (1) are (< n)-homotopic iff their inter-
section n-vectors coincide.

4) If an intersection number x;(A) # 0, then problem (1) generated by the
mapping A, has at least one simple n.s. (7;,y;) with a number i.

tip

(<n) 1s equal

Proof. 1) By Item 1 of Theorem 2, there exists a finite-dimensional
mapping A®*) that has the intersection vector chosen in advance. Let us extend
this mapping to an image-finite-dimensional mapping A*! having the same inter-
section vector: A¥l(u) = ||7Fu||A®) (xFu/||7Ful)), if 7Fu # 0; AFl(u) =0 € L, if
7%u = 0. Note that in neighborhood of the constructing image-finite-dimensional
mapping A there exist mappings of common form having the same intersection
vector.

2) Let us take as a basis the set of orthonormal eigenvectors of operator A.
Then the second assertion follows from the Item 2 of Theorem 2, Lemma 7, and
Definition 6.

3) Let two (< n)-typical mappings A; (i = 0,1) be (< n)-homotopic. Let
Agk] be image-finite-dimensional mappings that are (< n)-homotopic to the given
mappings. Then the mappings Agk] are (< n)-homotopic to each other and, by
Lemma 8, they are image-finite-dimensional (< n)-homotopic. Reasoning as in
the proof of correctitude of Definition 6, we obtain that the finite-dimensional
mappings Agk) which are the restrictions of the mappings Az[k] to the invariant
sphere S¥~1 are finite-dimensional (< n)-homotopic to each other. It follows from
Item 3 of Theorem 2 that the intersection n-vectors of the mappings Agk) coincide.

Conversely. Let the intersection m-vectors of the (< n)-typical mappings
A; (i = 0,1) coincide. Let Az[-k] be image-finite-dimensional mappings that are

)

(< n)-homotopic to the given mappings and AZ(-k are restrictions of the mappings

Agk] to the invariant sphere S¥~!. Then, by the Definitions 5 and 6, intersection

n-vectors of the finite-dimensional mappings Az(k) coincide too. It is follows from

Item 3 of Theorem 2 that there exists a finite-dimensional (< n)-homotopy G®*)

). Tt follows from Lemma 9 that the mappings Agk] are

joining the mappings Agk
(< n)-homotopic too.

4) Consider image-k-dimensional approximations AT} (k = 1,2,...) of a map-
ping A and their restrictions A®*) to invariant spheres S¥~!. From the Defini-
tions 5 and 6, and the Item 4 of Theorem 2 it is follows there exists such kg that

under the condition k > ko problem (1,(k)) generated by the mapping A% has
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(k) , (k)

at least one simple n.s. (7;"’,y; ') with a number 7. But if we consider the n.e.v.

yl(k) € R*¥ C H as an element of the space H, then the same n.e.v. is of the

n.e.v. of the problem yA¥}(u)u = u. By Lemma 7 and Theorem 3, the se-
(k) , (k)

quence (y;"’,y; ') has at least one limit point (vy;, u;), which is a simple n.s. with

a number ¢ of problem (1). ]

Note that there exist the distinctions between finite-dimensional prob-
lem (1,(k)) and infinite-dimensional problem (1). For the first problem, the
intersection n-vector is defined under the condition n < k — 1 (see Definition 4),
and between of all intersection numbers including X,(Ck) there exists a dependence
(see Lemma 4). For an infinite problem, the intersection vector can have any

dimension and its coordinates are independent.

5. A quasilinear boundary eigenvalue problem

Consider the following quasilinear boundary problem: find an eigenfunction
u € C?[0,27] and an eigenvalue A € R of

—u"(z) + p(u(z), v (z), r)u(z) = Iu(z), V(u) =0, /ude =1, (10)
0

where V(u) = 0 € R? are regular boundary conditions (for example, Dirichlet,
Neuman, periodic, antiperiodic). Let a function p(a,b,z) be continuous on the
domain R? x [0, 27] and following lower and upper estimates take place:

0<o<pla,bz) < N(|a|475 + |b|4/375 +1), (11)

where o, N > 0 and a small € > 0 are some constants. We shall show that
problem (10) may be investigated by a sequence of problems of the form (1) in
the space H = Ly(0,27).

At first, we shall formulate the lemma about a priori estimates. Introduce
following notations: ®(o, N,¢) is the set of continuous functions that satisfy es-
timates (11); {(A,u)}} is the set of normalised solutions of problem (10), which
have the number n; {(X,u)}§ = Uign Upea {(A, u)};,, where & = &(a, N, ¢).

Lemma 10 [4]. For any fized n the set {(\,u)}% is bounded in the space
R x C?[0,27] by some constant T = T(n, ®).

Corollary 2. Let us give T = T'(n,®). Let pr = pr(a,b,z) be an arbitrary
continuous function that coincides with the function p on the set [—2T,2T] x
[—2T,2T] x [0,27] and it is equal to zero outside the set [—3T,3T] x [-3T, 3T x
[0,27]. Then {(A,u)}p, = {(Xu)}y. |
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Denote by Prj, the operator of the orthogonal projection

k 2
Pri(u) = Z /uuidm U,
=0 \j

which generated by the orthogonal system of fucntions:
up = 1/V2m, uy = 1/\/msinz, ug = 1/y/mcosx, ug = 1/y/wsinz, ... .

At the same time with problem (10) let us consider the sequence of auxiliary
boundary problems:

2
~u(@) + pr(Prilu), (Pru(w)) s 2)u(o) = Nau(a), V(W) =0, [ udo—1,
(10, (k))
where £k = 0,1,.... Reduce each of problems (10, (k)) to the problem of the

form (1).

As usually, denote by W4(0,27) the Hilbert separable space of functions with
distributional derivatives up through order ¢, which are 2-integrable (i.e., the
Sobolev space). We recall that WJ(0,27) = Lo(0,27) = H is the space of func-
tions, which are 2-integrable. Consider the next mappings.

1) Denote by C{[0,2x] C C°[0, 2] the open set of positive continuous func-
tions. Consider the completely continuous mapping

pro: H — C3(0,21), pr(u) = pr(Pry(u), (Pri(w)’, =),

which generated by the k-dimensional projection operator and the function pr.

2) Denote by L(W2(0,2n), H) the Banah space of continuous linear operator
from W2(0,27) to H and by L;s(WZ2(0,27),H) C L(WZ(0,2x), H) the open
subset of linear isomorphisms. Consider the smooth mapping

D : CL(0,27) = Lis(W3(0,2), H), D(q) = —d*/dz® + g,

which takes a function ¢ to the continuous positive linear differential
operator. (The positivity means that for any function uw € H the inequality
f027r[D(q)u(:B)]u(ac)dw > 0 is true.)

3) Consider the smooth mapping

inw : Lis(W3(0,27), H) — Lis(H,W2(0,27)), inv(F)=F~!,

which takes a continuous linear isomorphism F' to the inverse isomorphism.
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4) Denote by j : W2(0,27) — H the imbedding operator. The operator j is
Hilbert—Schmidt one [11]. Consider the continuous linear operator h that takes
each linear isomorphism C € L;s(H,W2(0,27)) to the linear Hilbert-Schmidt
operator by h(C) = jC.

Now, consider the mapping product Ay = h-inv-D -pry : H — L. By the
complete continuity of pry, the mapping Ay is completely continuous. By the
positivity of D(q), for any u € H the operator Ag(u) is positive; in particularly,
one is self-adjoint. Thus, Ay € C, and furthermore, Ay : H — L, for any natural
n. From the given in this item definitions of the space H and the mapping Ay
it follows that problem (10,(k)) is identified to problem (1), where A = Ay and
v = 1/A. Moreover, by the definition of the mapping inv and by Lemma 10,
each of n.e.v. u € H of problem (1) with A = Ay is the classic eigenfunction of
problem (1,(k)), i.e., u € C2[0,27].

Now, we must prove that the mappings A are typical and calculate their
intersection vectors. In general, this problem is very difficult. We shall prove
a simple theorem. Denote by O = {u € H : ||u||g < 1} the unit ball. Denote by

LEZ’H) C L the open subset of Hilbert—Schmidt self-adjoint operators that have
positive and simple eigenvalues with numbers ¢ = 1,... ,n.

Theorem 6. Let the mapping A : O — LEZ

the rectriction A of the mapping A to the sphere S is (< n)-typical and its inter-
section n-vector is equal to (2,-2,...).

n) be completely continuous. Then

P roof. The first assertion is obvious. To prove the second assertion, let
us join the given mapping A with the constant mapping A = A\(O) by following
(< n)-homotopy: G(u,t) = A((1 — t)u). Now, the assertion of Theorem 6 is
a consequence of Item 2 of Theorem 5. [

Corollary 3. For any k =0,1,... problem (10,(k)) with a separating boun-
dary condition has at least one simple n.s. with any number i.

Proof. Itisknown [15] that the linear boundary problem
—u"(2) + q(z)u(z) = Au(z), V(u)=0

with a separating boundary condition has simple eigenvalues only. Therefore for
the mapping A under any n all conditions of Theorem 6 are satisfied. By Item 4
of Theorem 5, problem (10,(k)) has at least one simple n.s. with any number 7. m
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Return to investigation of problem (10).

Theorem 7. Problem (10) with a separating boundary condition has at least
one simple n.s. with any number 1.

Proof. Denote by {(Au)}}, the set of normalised solutions of problem
(10,(k)), which have the number n. By the compactness of the support of the
function pr, the set U2, {(A,u)}% . is compact in R x C?[0, 27]. Therefore, there
exists a sequence (Ag,ur) C {(/\,iu)}%,C (k = 1,2,...), which has a limit point
(A%, u%) € R x C?[0,27]. Tt is not difficult to show that the pair (A, u0) is the
simple solution with the number n of problem (10), where p = py. From Corollary
2 it follows that the pair (A, u?) is at the same time the solution of input problem
(10). ]
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