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Entire functions whose tails have 4-times positive coefficients are studied.
The growth estimate for such functions is given. It is shown that the same
growth estimate holds for entire functions of order < 1 whose tails do not
have zeros in the angle {z : |argz| < 47 /5}.

1. Introduction and statement of results

Let
o0
f(Z) = Zakzka ag > 03 (1)
k=0

be a formal power series. Denote by R(f) its radius of convergence. For R(f) > 0,
denote by

00
tn(z;f)zzakzka n:Oal,2a"' ) (2)
k=n

the tails of the series (1), and set

M(r, f) = max|f(2)], 0 <7< R(f)-

|z|=r
In 1997, I.V. Ostrovskii proved the following theorem.
Theorem A ([2]). Assume R(f) = oo. If all zeros of tails (2), for all suffi-

ciently large n, are real nonpositive, then

log M(r, f) = O((log7)?). (3)
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On power series whose tails have multiply positive coefficients

Theorem A is an analogue of Pélya’s result [5] of 1913 on power series (1)
whose sections Y a2* have only real negative zeros for all sufficiently large n.
In the joint work of I.V. Ostrovskii and the author [4], a new analogue of Theo-
rem A has been obtained (see Theorem B later in the text). It is based on concept
of multiple positivity introduced by M. Fekete [1] in 1912.

Definition. A sequence {a}3° ; of real numbers is said to be m-times positive
for m € NU {oo} if all minors of orders less than m + 1 of the infinite matrix

ap a1 az asg
0 apg ai a2
0 0 apg ai

are nonnegative.

To formulate precisely the analogue of Theorem A mentioned earlier, let us
introduce the following classes.

Denote by Ry, m € NU {oo}, the class of all power series (1) such that the
sequences {a,,an11,. ..} are m—times positive for all n large enough. Evidently,

Ri DRy DR3D...D Ry.

Series (1) belonging to Ry may have singularities of rather arbitrary kind and
location:

Example. ([4]). Let (1) be the power series expansion of

z
=14 — + h(z2),
FE) =14 o +hie)
where h(z) is an arbitrary power series with real coefficients whose radius of
convergence is strictly greater than 1. Evidently, for some € > 0,

ar =k+0(1—-¢e)%), k— .

Hence, a% > ag—105+1 for k large enough and therefore {an,ant1,... } is 2-times
positive for all sufficiently large n.
The next theorem from [4] shows that for m > 3 the situation is quite different.

Theorem B ([4]). If f € Ry, for some m > 3, then: either
(i) R(f) = 0o and

lim su log M (r, f) 1 . 1++/5
m =
T_m,p (logr)2  — 2logc’ 2

=1.613...; (4)
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or
(i) 0 < R(f) < oo and

A
f(z) = T=2/R(f) —g(2),

where A is a positive constant and g is an entire function with nonnegative coef-
ficients (except at most a finite number) satisfying the condition

logr - loglog r

log M(r,g) < +O(logr), r— 0. (5)

log 2
The bound (4) cannot be improved for entire functions from Rs. The bound (5)
cannot be improved for non entire functions from R, for any m > 3.

The last theorem means that a series (1) from R,,, m > 3, either represents
an entire function satisfying (4) or has exactly one singularity (a simple pole) in
the whole complex plane and satisfies the very restrictive condition (5).

The question arises whether the bound (4) can be improved for entire functions
from R,, for m > 4. In the present work we show that, for entire functions
belonging to R,,, m > 4, an estimate better than (4) holds.

Theorem 1. Ifm > 4, then an entire function f € R, satisfies the condition

. log M (r, f) 1
lim su < )
T_mop (logr)? — 2logd(R4)

where the constant d(R4) > 2 is independent of f and

(6)

2.0833 < d(Ry) < 2.087.

Note that for m < oo there is a relation between m-times positivity of the
sequence {ay}7_, and zeros of the corresponding section Y ,_ axz* but this rela-
tion is a less strict one than for m = oco. I.J. Schoenberg ([6, p. 397, 415]) proved:
(i) the necessary condition for {a}}_, to be m-times positive is the nonvanishing
of Y p_oarz* in the angle {z : |argz| < (7m)/(m + n — 1)}, (i) the sufficient
condition is its nonvanishing in the larger angle {z : |argz| < (mm)/(m + 1)}.
Both conditions are best possible in terms of the sizes of angles.

As a consequence of Theorem 1 and I.J. Shoenberg’s result (ii) we obtain the
following

Corollary 1. Let f(z) be an entire function (1) of order strictly less than 1
with real coefficients ap. Assume that for all sufficiently large n, the zeros of
tails (2) are located in the angle {z:|argz —n| < Z}. Then the estimate (6)
holds.
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2. Preliminaries

Let

{an}tnZo, a0 >0, (7)
be a sequence of real numbers. Recall two lemmas from [3].

Lemma 1. Let (7) be a 2—times positive sequence. Set n = min{k : ar = 0}.
If n is finite, then ar = 0 for any k > n.

Lemma 2. Let (7) be a 2—times positive sequence without zero terms. Then

akg—1
ag

o
the sequence { } 18 nondecreasing.
k=1

By Lemma 1, a 2-times positive sequence (7) is either finite (has only finitely
many nonzero terms), or is composed entirely of positive terms.

With (7), we associate the generating function (1). It follows from Lemma 2
that the generating function (1) of 2-times positive sequence (7) has a nonzero
radius of convergence.

Assume an entire transcendental function f belongs to R,,, m > 2. Choose n
such that {an,an+1,- ..} is m-times positive and moreover a, > 0. By Lemma 1,
ay > 0 for all £ > n. This permits us to introduce the positive numbers

Gr—1

Pr = , k=n+1n+2,... (8)
ay
and
Pk aj_
op=—=—"—, k=n+2,n+3,.... (9)
Pk—1 apar—2
It is easy to see that
ak = S (10)

k—n 7Tk k—j+1 "
Pp41 Hj:n—|—2 9;

Since the sequence {a,,ap+1, ...} is 2-times positive, we have

Gk—1 O

>0, k>n+2,
ag—2 Qkg—1

ie., az_l > agag_o, k > n + 2. Therefore,

Sp>1, k=n+2,n+3,.... (11)
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It turns out that if sequence (7) of positive numbers satisfies a stronger condition
than (11), namely d, > A > 1, then the corresponding generating function (1) is
an entire function of order 0. More precisely, the following lemma holds.

Lemma 3 ([3]). Let (1) be a formal power series with all positive coefficients
ar > 0. Assume that there exists a constant A > 1 such that

5k Z Aa k 2 kOa (12)

where numbers 0y, are defined by (9). Then the series (1) converges in the whole
complez plane C, and

log M 1
]im Sup Og (7‘, f)

. 13
r—00 (log 7")2 2 log A ( )

The next lemma from [4] gives information about series (1) from R,,, m > 3.

Lemma 4. Let sequence (7) belong to Rs. Let ny be an integer such that
the sequences {an,ap+1,-..} are 3-times positive for any n > ng. There is the
following alternative:

(I) for anyn >ng+2, dop>c= 14'2—‘/5,

(II) there exists ¢ > ng+2, 64 <c.

In case (I) the assertion (i) of Theorem B is valid while in the case (II) the

assertion (i) is.
We will need the following test of m-times positivity that is contained in [4]
and which is due to I.J. Schoenberg (see [6]).

Lemma 5 (Schoenberg’s Theorem) ([6]). Let {bx}3>, be a sequence of positive
numbers. Consider the m matrices

b b1 by ... by,
0 by b1 ... by_o ...
BV: 0 0 b() b,,_3 V:1,2,...,m,
0 0 0 ... b
consisting of v rows and infinitely many columns. Assume that forv =1,2,... ,m,

the matriz B, satisfies the condition: all its v x v—block-minors (i.e., minors con-
sisting of v consecutive rows and v consecutive columns) are positive. Then the
sequence {by}2° , is m—times positive.
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3. Proof of Theorem 1

3.1. The lower bound for d(R,)

Assuming f € R,,, m >4, we choose ng such that {an,any1,...} are
m-times positive for all n > ng. The next lemma plays a basic role in the proof of
Theorem 1. Without loss of generality we may assume that a; > 0 for all & > ny.
Thus, the numbers pg, k > ng + 1, and &, k& > ng + 2, defined by (8) and (9)
respectively, are well defined.

Lemma 6. Let {a;};2,,, an > 0, n > 1, be a 4-times positive sequence.
Then

3\2_5 2 1
bpgr —= | > — + . 14
( nt2 2) 4 bni3  Ont202 300t (14)

Proof. Using (9), we have

Qp+1 QAn4+2 QAn+43 Api4

I,.1 = an an+1 Ap42 Gn43
mt 0 an an+1  An42
0 0 an An+1
2 a%—kl AnGn43 a%an+4 Anan+42
= Gy 1 10n0n 42 +2 -3 - 7 — 1+ —3
anQn+42 An4+10n42 an+420Qy, 41 Ay 11
2 1 1
_ 2
~ Ont10nfn+2 (‘5"“ L SPY SUPRL A IO Y SO S
n+29n+3 n+2%n+3Yn+4 n+2

4-times positivity of {ay}3°, implies I, > 0, from which the inequality (14)
follows. u

Lemma 7. Let an entire function (1) belong to Ry. Then there exists an
integer ng such that o > 2 for all k > ng + 2.

Proof. Letan entire function f belong to R4 C R3. By Lemma 4, there
exists an integer ngy such that §, > ¢, n > ng + 2. Assume that there exists
n' > ng + 2 such that 6,/ < 2. Then, by (14),

Lo (5,3 2 b2

4 T 4 Syt
whence 0,41 < 2. Applying the same procedure successively, we get §, < 2 for
all n > n' + 1. Since
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for ¢ < x <2, then for n > n’ + 1 we have

5 2>5_32>5_2
4 s\ 2 4 by’

whence dp+1 < 0. Therefore, there exists
nli)n;o o =:b€[c,2)]. (15)
On the other hand, this limit, by (14), satisfies the condition
3\ .5 2 15 2
(”—5) 1T T H Ty
and, hence, b ¢ [c;2] in contradiction with (15). |

Hence, by Lemma 7, for any function f € Ry,

o(f) == linrggéfén > 2. (16)
Define
5(Ra) = inf{5(f) : f € Ra}. (17)
Lemma 8. We have
6(R4) 2 d,

where d(= 2.0833...) is the biggest positive root of
22° — 6z* + 223 + 522 — 3z + 1 = 0.

Proof Let f belong to R4 and ng be such an integer that sequences
{an,an+1,...} are 4—times positive for all n > ny. By (14),

2 1 1

d 4+ ——3- + >0, n>ng+1, 18
e On+10n42 62,102 90nt3  Ong1 (1)
whence
2 1
6n+1+ -3+ >0, n>ng+ 1. (19)
5n+15n+2 5n+1

It follows from (19) that

Opt2 + 2 3+ !
9 -
n+ 6n+25n+3 (5n—|—2

ZO, nZnOa
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or,
1 1 3 1
+ — + >0, n > ny. (20)
202 02,102 50n43 202 0ny2 202,502,

By adding (18) to (20), we obtain

2 1 1 3 1
— - 34+ 4+ ——-——4+———_>0 21

flz,y) =z + py + . + 522 222y + 222y = (21)

where £ = §,+1 and y = d,490.
Evidently,
ofwy __2 3 1 2 3
gy wy? | 2222 123 —  zy? | 2022

for z > 3/4.

Note that if x <y then f(z,z) > f(z,y) > 0, or the same
2z f(x, ) = 225 — 62% + 2% + 522 — 324+ 1 > 0. (22)

Two the biggest positive zeros of 2z*f(x,z) are approximately equal to d :=
2.0833... and 1.335 < 2. It follows that if > y and £ > 2 then x > d.
Assume that there exists J; such that §; < d. Then 541 < §5 < d, ds42 <

ds41 < d, ..., e, {0p}52, is a nonincreasing sequence. Therefore there exists
limg, 500 O0p, =: dp. It follows from (21) that §op > d. This contradiction implies
that 6, > d for all n > ng + 2. [

Define d(f) and d(R4) by formulas
log M(r, f) 1

WS (logr? = Zlogd([) (23)
and
d(R4) = lnf{d(f) : f € R4}. (24)

It follows from Lemma that d(f) > d(f) and hence d(R4) > 6(R4). Then, by
Lemma 8, d(R4) > 2.0833... .

3.2. The upper bound for d(Ry)

Lemma 9. The entire function

_ (k=1)k
g 2 2F

fo(2) =

NE

ES
Il

0

belongs to Ry for all ¢ > a, where a(= 2.08679...) is the biggest positive root of
b —3z5 2t 22 —1=0. (25)
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Proof Consider the functions

k=0
We have .
_ (k) (k4n=1)
(e, fg) = 2 3 g~
k=0
f"—2+ﬁ n = —k(k=1) —n\k fﬁ+ﬁ n —n
=q 272z Zq ) (zq ) =q 27722 fq(q z)

k(k—1) ) O
Thus, if for some ¢, the sequence {q_ 2 } is 4-times positive, then all

k(k—1) ) o . .
the sequences ¢~ 2 }k , n > 1, are also 4-times positive. Therefore, to

=n
show that f,(z) € Ry for all ¢ > a, it is enough to show that the sequences
k(k—1) } . L.
qg 2 are 4-times positive for all ¢ > a.
To do this we will use Lemma 5. Construct

bop b1 b b3 ...
Blzz(bo,bl,bQ,b?n"')’ B22(00 b(l) b? bz >’

bp b1 by b3 bs

bo b1 by bs
0 by by by b
Bs=| 0 b bt by ... |, Bi=|[ 00 b1 b2 b3
0 0 by b 0 12

0 0 0 b b

Positivity of all 1 x 1-block-minors of By is trivial. All 2 x 2-block-minors of
By are positive for all ¢ > 1 and hence they are positive for ¢ > a > 2. All
3 x 3-block-minors of B3 are one of the kind:

1 1 qfl 1 qfl q73
Ar=10 11 |, A=[11 ¢ |=¢"¢-1)-q-1),
0 01 01 1
_n(n-1) _(n41)n _ (n+2)(n+1)
2 2 2
A o _(n—1)2(n—2) _n(nZ—l) _(n-gl)n
n = s —
_ (n=2)(n=3) ~ (n=1)(n-2) ~n(n—1)
2 2 q 2
, 11
— q(—3n +3n—10)/2 1 q q2 N Z 3.
1 ¢ ¢
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S

Thus, foralln > 3, A, > 0,ifg > 1and 45 >0, if g > % Hence, if ¢ > 1+2 )
then all 3 x 3-block-minors of Bs are positive.
All 4 x 4-block -minors of B4 are one of the kind

1 1 qfl q73
011 gt
G=logo01 1 |
0 0O 1
1 gt g3 ¢°
|11 e R 5, 4 3
C=|g 1 1 g |=0@ -3+ 20—,
00 1 1
~ n(n—1) ~ (n+D)n _ (n+2)(n+1) _ (n+3)(n+2)
q 2 q 2 q 2 q 2
~(n—-1)(n—2) ~ n(n-1) _ (n41)n ~ (n+2)(n+1)
q 2 q 2 q 2 q 2
Cn = _ (n—2)(n—3) _ (n—1)(n—2) _ n(n—1) _ (n+D)n
q 2 q 2 q 2 q 2
_(n=8)(n—4) _ (n=2)(n=3) _(n=1)(n—=2) _n(n-1)
q 2 q 2 q 2 q 2
11 1 1
2 3
__—4n’+10n—24 1 g ¢ ¢
_q bl n241
1 ¢ ¢ ¢
1 ¢ ¢ ¢
' q‘g q‘;o L q‘z q‘i
1 g g7 g’ |_ 2|1 ¢ 7 q
03 — 1 1 q_l q_3 - q 1 1 q—l q—3
0 1 1 g 0 g gq 1
11 1 1 11 1 1
1 2 3 1 2 3
—18 q9 q 4q —18 q9 q9 g
= >
q 1 qz q4 qs Z4q 1 qz q4 qs
0 ¢ ¢ ¢ 1 ¢ ¢ ¢
We have, Cy > 0,if ¢ > a. Forall n > 3, C,, >0, if ¢ > 1. Thus all 4 x 4-block-

minors of B, are positive if ¢ > a.

k(k—1) ) o . L.
By Lemma 5, the sequences {qi 2 } are 4-times positive for all g > a.
]

k(k—1)

Using Cauchy’s inequality M(r, f;) > g~ 2 rF with k equal to the integer
part of logr/logq, we get

log? r
log M >
o8 M(r,fo) > gio

+ O(logr), 7 — o0.
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Thus, d(fq) < g for all ¢ > a. On the other hand, by Lemma 3, d(f,) > ¢ for all
g > a. It implies d(f,) = ¢ and hence, by Lemma 9, d(R4) < a.

4. Proof of Corollary 1

Let t,(z, f) be a tail of f(z) such that all its zeros z%n), zén), ..., are situated

in the angle {z : |argz — 7| < 7/5}. Then

n - Z
k=1 k

By Schoenberg’s result (ii) the sequence of coefficients of the polynomial

PM(2) = ap2" H (1 - %)

V4
\z,(cn) [<m k

is 4-times positive. Since coefficients of t,(z, f) can be approximated by those of
P™ then tn(z, f) has also 4-times positive coefficients. Therefore, f € Ry. [ |
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