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The problem of stabilizability by time-delayed feedback control is inves-
tigated for an evolution partial differential equation on R” x [0, +00). We use
the Tarski-Seidenberg theorem and its corollaries to obtain some estimates
of semi-algebraic functions on semi-algebraic sets and obtain estimates of
the real parts of quasipolynomial zeros. These estimates make it possible to
apply the Fourier transform method to investigate the stabilizability prob-
lem. We utilise some results of the theory of ordinary differential-difference
equations to study a “dual" system obtained from the original system with
time-delayed feedback control by applying the Fourier transform. We also
give some examples of stabilizable and non-stabilizable systems.

0. Introduction

One of the most general-accepted ways to study control systems with dis-
tributed parameters is their interpretation in the form

d
d—‘;v — Aw+ Bu,  t>0, (0.1)
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On stabilizability of evolution partial differential equations

where w : (0, +00) — H is an unknown function; u : (0, +00) — H is a control;
‘H, H are Banach spaces; A is an infinitesimal operator in H; B: H — H is a
linear bounded operator (see, e.g., [2, 3, 10, 12, 13, 16, 18, 19]). An important
advantage of this approach is a possibility to employ the ideas and the technique
of the semigroup operator theory. At the same time it should be noticed that the
most substantial and important for applications results on operator semigroups
deal with the case when the semigroup generator A has a discrete spectrum and
may be treated in terms of its eigenvalues and its eigenelements. These assump-
tions correspond to differential equations in domains bounded with respect to
space variables but in general they are not true for domains unbounded with
respect to them.
In the present paper we consider the following equation

2
Tt +201 (D) 222D 4 g (D) i) + (D)l t) =0,
zeR" t>2h, (0.2)
where D, = (—i0/0z1,...,—10/0zy), ao(o), ai(o) and b(o) are polynomials,

b(c) Z0on R, w: R* x (h,+00) — C is an unknown function, u : R* x
(h,+o00) — C is a control, h > 0.

In Section 1 we investigate stabilizability of the telegraph equation, the wave
equation and some model equation.

We use the following Sobolev spaces C1 = {g € CYR") | |lg|? < oo},
lglly = sup{|Dgg(z)[(1+]])™7 | z € R* Ala| < q}, €] ={g | [Vt €[0,2h]g(-,?) €
Ci1 A [Va € Nj(lo| < ¢ = Dgg € C(R* x [0,2h]))] A [llgll, < +oo]}, llgllf, =
sup{lg(- D14 |t € [0, 2h]}, CL = {g | [¥¢ € [0, +00)g(-, ) € O A [Ver € N ([a] <
g = Dgg € C(R" x [0,400)))] A [sup{llg(-, )15 | t € [0,+00)} < +oc]}, where
g €Ny =NnNn{0}, vy € R a = (a,-...,0) €Ny is a multi-index, |a| =
a1+---+ay, |-| is the Euclidean norm of R¥. We also use the spaces C& = [ CY,

yER
C,*= ULl =UCciMm= N C,8= () C&, and for P € M

q€Ny vER g€Np q€Ny
denote by P(D;) the following operator P(Dy)f = F Y(PJf), f € §', where JF is
the Fourier transform operator (such an operator P is called a pseudodifferential
one).
Further we assume throughout the paper that v > 0 and h > 0 are fixed.

Definition 0.1. Eguation (0.2) is said to be stabilizable in C7°° if there erist
such functions py,p1,p2 € M that for each p € Ny there exists ¢ € Ny such that
for every solution of this system with the control

ow(z,t — h)

u(z,t) = po (Dg) w(z,t — 2h) + p1 (D) w(z,t — h) + p2 (Dy) 5

(0.3)
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under the initial condition ( Bwu;at ) € C4 we have (

’U)(', t)
ow(-,t)/0t
Such functions pg,p1,p2 are called stabilizing functions for equation (0.2), and
such a control u is called a stabilizing control for this system.

w P
Ow /ot ) € C, and
P

—0 as t —» 4-o00. (0.4)
v

In the stabilizability problem under consideration a delay appears in the cont-
rol because, in fact, any control cannot be realized instantly (without a delay).

. w . . )

Denoting w = Ow ot ), we conclude that equation (0.2) is equivalent to
the following system:
o t

W((;’ ) 4D w(at) +b(Dy)u(zt), 1z ERY, t> 2h, (0.5)

0 1 .
where A = “ N A control of the form (0.3) for equation (0.2)

—ap —201

corresponds to the control

u(,t) = Py (Dy) w(-,t — 2h) + Py (Dy) w(-,t — h), (0.6)

whereP0:< 0 O),P1:< 0 0 )
—po O —p1 —p2

To investigate system (0.5), we use the Fourier transform method that was
proposed by I.G. Petrowsky [14] to study the well-posedness property of the
Cauchy problem for evolution systems on a layer R" x [0,7’]. Later this method
was generalized by I.M. Gelfand and G.E. Shilov [7].

It is well known [7] that in the case b(o) = 0 all solutions of the system
(0.5) tend to 0 as ¢t — +oo iff Vo € R™ sup {RA | det(IX — A(0)) =0} < O,
where I is the identity matrix. One can prove that in the case b(c) # 0 the an-
swer on the question: whether all solutions of the system (0.5) with control (0.3)
tend to 0 as t — 400 depends on the zero dispositions of the quasipolynomial
det {IX — A(0) — b(o) (Po(0)e™ 2" + Py(0)e™"*)}, where Py, Py € M [1]. If the
answer on the question is positive then for each zero Ag(c) of this quasipolyno-
mial we have RA\g(0) < 0, 0 € R (Statement 4.2). The asymptotic behaviour
of quasipolynomial roots is well known (see, e.g., [1]). Moreover, for an arbi-
trary quasipolynomial there are necessary and sufficient conditions for negativity
of real parts of its roots [15]. Unfortunately, these conditions have so compli-
cated form that it makes impossible to apply them to a quasipolynomial de-
pending on a parameter. So using these conditions it is impossible to choose
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parameters (Pp, P;) in order that real parts of its roots are negative. That’s
why we have to investigate dependence of zero dispositions of the quasipoly-
nomial & + Be " on B € C in Section 2. It makes possible to choose an ap-
propriate Py, P; and stabilize system (0.5). However A, B, Py, P; also de-
pend on a parameter (o0 € R"). That’s why in Section 3 using the Tarsky-
Seidenberg theorem and its corollaries, we have to obtain some estimates for
semi-algebraic functions on semi-algebraic sets and apply them to the quasipolyno-
mial det {IX — A(c) — b(0) (Po(0)e 2" + Pi(o)e ™) } = A2 +2a; (o)A +ao(0) +
b(@) (po(@)e + pi(0)e ™ + po(a) e ).

Put Ag(s) = sup{R\ | A2 + 2a1(s)\ +ag(s) =0} on C*, W(T,v) = {oc € R |
dlo, N{b}] < T(1 + |o|?)?}, where ' > 0, v € R, N{H} is the set of real zeros of
a polynomial H, d(o, M) is the distance between a point o and a set M C R (if
N{b} = 0 then W(T',y) =0 for all T' > 0 and v € R).

In Section 4 we prove the following

Theorem 0.1. Assume that A and B satisfy the conditions

Vo € W(®1,p1) Ao(0) <0, (0.7)
Vo € RM\W (®1,¢1) |det B(o)|? > ®9(1 + |0|?)%2, (0.8)
Vo € R" 1—hAg(o) > @3(1 + |o]?)%2, (0.9)

where ®1, P9 > 0, 3 € (0,1], p1,p2,03 € Q, w3 < 0. Assume also that R > 0,
P2®3R >e, 7 €Q, 2+ 3 +1r>0. Then equation (0.2) is stabilizable in C, >
and

po(0)=(4(0))? b(0),
p1(0)=2¢ (o) [al(a) cosh (h\/D(O’)) + v/D(0) sinh (hm)] » (0.10)
p2(0)=21(o) cosh (hm)

WR(I—HUP)Te*hal(”)
elb(0)PRR(14]02) e
D(0) = (a1(0))>—ao(0) (we choose the branch of \/z such that Ry/z > 0, z € C).

are stabilizing functions for this equation, where (o) =

In Section 2 we prove that conditions (0.7), (0.8) are necessary for (0.11) and
(0.9) is necessary for (0.12). Thus we have

Theorem 0.2. If equation (0.2) satisfies the following two conditions
Vo € R" [b(c) =0= A¢(0) < 0], (0.11)

1
o
then this equation is stabilizable in C;°°. Moreover, condition (0.11) is necessary
for stabilizability of (0.2) in C5.

Vo e R" Ao(o) < (0.12)
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Finally, in Remark 4.1 we show that for the stabilizing control u correspond-
ing to the functions py,p1,p2 constructed in Theorem 0.1 we have u € C and

[l Ol < u(t)‘ ( Bwu;at ) q

for some s € Ny, where p € C[0,4+00), u(t) — 0
as t — +o0.

v
Note that the problem of stabilizability by feedback control without delays
(h = 0) was investigated in [5, 6] for equations and systems of the form (0.5).

1. Examples

Example 1.1. Consider the telegraph equation

0w ow
— —2k— — A D = R™ 2 1.1
52 k(’)t w+b(Dy)u=0, ze€R" t>2h, (1.1)

where b is a polynomial, k € R. It is easy to see that

(01 Ik o] > IH
A‘”)“<—40P2k>’ Aole) = [k-+ TR, ol <k -

Let us consider three cases: i) k < 0, ii) k = 0, iii) £ > 0.
i) Let & < 0. Then Ag(o) < 01if o # 0 and Ap(0) = 0. Taking into account
Theorem 0.2, we obtain

Statement 1.1. Let k < 0. Then equation 0.2 is stabilizable in C7>° iff
b(0) # 0.

Let us find a stabilizing control of the form (0.10) for this equation, if 5(0) # 0.
Put @ = d(0, N{b})/2, N = {0 € R" | |det B(0)| < @3}, pu(r) = sup{c € N |
|o| = r}, r > 0. Using the same reasoning as for obtaining estimate (0.7) in
Section 2, we conclude that p < ®;(1 +72)%!, r > 0, where ®; > 0, ¢; € Q.
Hence, W(®1,¢1) D N D N{b}. Therefore estimates (0.7), (0.8) hold with
these @1, P9, 1 and @3 = 0. Obviously, estimate (0.9) is true for &3 = 1,
w3 = 0. Put R = 2e/®3, r = 0. Due to Theorem 0.1 we conclude that pg,p1,p2
defined by (0.10) are stabilizing functions for (1.1) in the case k& < 0, where

_ _ 2(o)e ™" — Ji2 2
W) = e Do) = VI TT.

ii) Let k = 0. Then (1.1) is the wave equation. We have Ag(c) =0, o € R3.

Due to Theorem 0.2 we obtain

Statement 1.2. Let k = 0. Then equation 0.2 is stabilizable in C*° iff

Vo eR'  b(o) £0. (1.2)
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Let us find a stabilizing control of the form (0.10) for this equation, if (1.2)
holds. With regard to (3.2) we conclude that there exists o > 0, ¢ € Q such
that [b(c)|? > ®o(1 + |0|2)¥2, 0 € R". Hence, estimates (0.7), (0.8) hold with
these @9, 9 and arbitrary ®; > 0, p; € Q. Evidently estimate (0.9) is true for
®3 =1, p3 = 0. Put R = 2¢/®y, r = 0. Due to Theorem 0.1 we conclude that
Po,P1,pe defined by (0.10) are stabilizing functions for (1.1) in the case k = 0,

where 9(0) = D(o) = i|o].

2b(o)
2¢h |b(o)|? + By

iii) Let £ > 0. Then k < Ag(0) < 2k, 0 € R*. Applying Theorem 0.2, we

obtain

Statement 1.3. Let k > 0. If h < 1/k and (1.2) holds then equation 0.2 is
stabilizable in C;°°. If (1.2) is not true then this equation is not stabilizable in

C;OO.

Let us find a stabilizing control of the form (0.10) for this equation, if h < 1/k
and (1.2) holds. With regard to (3.2) we conclude that there exists &9 > 0, p2 € Q
such that |[b(c)? > ®o(1 + |0|?)¥?, 0 € R®. Hence, estimates (0.7), (0.8) hold
with these @4, 9 and arbitrary ®; > 0, p; € Q. Obviously, estimate (0.9) is true
for &3 =1 —2kh, 3 =0. Put R = 2e/(®9(1 —2kh)), r = 0. Due to Theorem 0.1
we conclude that pg, p1, pe defined by (0.10) are stabilizing functions for (1.1) in

—O'eikh'
2b(0) D(o) = /I =]o]".

2eh |b(o)|* + ®o(1 — 2kh)’

the case k > 0, where ¢ (o) =

Example 1.2. Consider the equation

Pw (9 BN ow N vt (1o Nuzo
92~ \ 9z Oz o )Y 921029 )

z€R?, t> 2h. (1.3)

. 1— (01 —09)?, |og—o02| < V2

Evidently A = ’ Z b = 1.

viaently 0(0) [ —1, |O’1 _0_2| > \/_ ) (U) o109 +

Hence (0.12) holds for A < 1/2. We have A¢(0) = —(0f —0? +1)/0? < -1 <0,

o € N{b}, therefore (0.11) is valid. Taking into account Theorem 0.2, we get
that the system (1.3) is stabilizable in C *°.

Now we construct a stabilizing matrix of the form (0.10) for this system. We
have Ag(0) < —1/2, 0 € W(®1,¢1), where &1 = 1/4, ¢ = —1/2, T = 1/2,
v =0.

Let us obtain an estimate of the form (3.2) for b(c) = o109 + 1. At first,
assume that |o9| > |o1| and |o| > 1/4. Then |01 + 1/09| > d [0, N{b}]. Hence,
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o102 +1[2 > |02|? |01 + 1/02| > |o2|? (d[o, N{b}])?. Since |02 > (01| +]o2|)/2 >
lol/2 > (1 4 |o]?)"/? /10, it follows that

1
o102+ 1P > 2o (14 ]of?) (dfo, N {B)])?. (1.4
Obviously, if |o2| < |oi| and |o| > 1/4 then the estimate (1.4) is also true.
If |o| < 1/4 then d[o, N{b}] < 2 therefore (1+ |o|?) (d[o, N{b}])* < 4 and
|o1og + 1] > 1 — |o109| > 15/16. All this implies that (1.4) is true for all o € R2.
Therefore |o109 + 1|? > 1/1600, o € R2\W (®1, ;). Hence &2 = 1/1600, 5 = 0.
On the other hand, |Ag(c0)| < 1, o € R2. Therefore ®3 = 1 — h, p3 = 0. Put
r = 0, R = (160le)/(1 — h). Due to Theorem 0.1 we conclude that pg, p1,
1601(o109 + 1) h(o1—oo)?

defined by (0.10), wh = (01-02)°/2
pz defined by (0.10), where (o) = e = T !

D(c) = (01 — 02)? /2 — 1 are stabilizing functions for equation (1.3).

2. Some forms of representations for solutions of ordinary
differential-difference systems

Consider the following differential-difference system
v'(t) = Av(t) + Bov(t — 2h) + Byo(t — h), t > 2h, (2.1)
under the initial condition
o(t) =0°(t),  t€0,2h], (2.2)

where A, By, B; are matrices (2 x 2) with complex coefficients.
Denote

K(t)=0, ift<0, K(0)=1I, K(t) = /et’\Hl()\) dx, ift>0, (2.3)
(©)

where c¢ is greater then the supremum of the real parts of the roots of det H()),

H()\) = M — A— Bye?"* — Bye™*. Here and further we denote throughout the

paper f(c) f(A)dx =V.P. f:foo f(c+ip) du, V.P. means the principal value of the

integral. K (t) is called a resolving matrix of the system (2.1).
Due to [1, Theorems 6.2, 6.4] we obtain

Statement 2.1. Let v° € C[0,h]. Then there exists a unique solution v(t)
(t > 0) of the problem (2.1), (2.2) such that v € C[0,+00), v € C*(2h,+0).

194 Matematicheskaya fizika, analiz, geometriya , 2003, v. 10, No. 2



On stabilizability of evolution partial differential equations

Moreover,
2h
w(t)=K (t — 2h)v°(2h) + Bo / K(t— 17— 2h)0°() dr
0

h
+B; / K(t — 71 — h)o°(1) dr, t > 2h. (2.4)
0

Set H(3,&) = & + Be "¢ and denote A\(B) = sup {R¢ | H(B,£) = 0}.

Lemma 2.1. If 0 < 8 < 1/(eh), then A(8) < 0 and —1/h < \(B) < (-1 +
e(1 —eph))/(eBh?).

Proof Seté& = (z+iy)/h, z € R, y € R We have H(8,£) = 0 iff
z 4+ Phe ™ cosy =0 and y — Bhe P siny = 0. It is easy to see that if the second
equality is satisfied, then y = 0 or z < In(Bh) < —1. Let y = 0 then the first
equality is valid iff z+ She™ = 0. Since 0 < 8 < 1/(eh), then this equality holds
at least for one z. Let z¢ be the maximum of x such that z + She™ = 0. It is
easy to see that —1 < zg < 0 and hA(B) = zo. Because of e * > 22+ (2—e)z+1,
r € [~1,0], we obtain that if Sh(z? 4+ (2 —e)r + 1) > —z and z > —1, then
x > zo. It follows from here that hA(3) = 2o < z1 where z1 is the greatest
root of the equation Sh(z? + (2 — e)r + 1) = —z. It is easy to see that z; <

(=14 y/e(1 —eph))/(eBh). The lemma is proved.

Put
_ 0 1 _ 0 0 2 h(Ai+X2)
A—( a0 —2a1>’ B0—<_1 O)ﬁe ,

_ 0 O hAg 0 0 hAs
m= (D 0 )i (2 O )aen e

where \; Ay are the roots of A2 — 2a1\ + ag, 0 < 8 < 1/(eh). Then

det HA) = H (B, A — A) H (B, A — Aa). (2.6)

Lemma 2.2. Let 0 < g <1/(eh), c(B) #0, MB) < c(B) < 1/h, Ag = R\ >
RX2 and ¢(B) = c¢(B) + Ao. Then

o(e(8) +ho)t

|C(/3) + A()‘ |C(ﬂ)| |C(ﬁ) — )\(IB)‘Qw y t> O, (27)

1K (@) < M (1422 +23)°
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where M >0, w > 0.

Moreover,
N (e(B)+Ao)t
/ g e < My (14 38+ 9) - 2(htl)w
iy | A HR) [<(B)] () — AB)|
t>0, (2.8)
where My > 0.

Proof Wehave

_ e_’\t e_)‘t —2hA —hAY -1
Kit) =1 A+ (A + Boe™ 4 Bre™™ ) BT (N)dA
(e(8)) (e(8))

e)\t
= / S (A + Bye 2 4+ Ble—“) d\

det H())
(@(8))
(é(ﬂ)) )\ det H()\)
+BAe MO L gx e MO >0, (2.9)

Therefore

?

K] <3 (142 + ) CEEDD e L | et

t >0, (2.10)

o0

where K > 0.
Taking into account (2.6) and

215(B,9) = &, €l =2/h,  0<B<1/(eh), (2.11)

we conclude that

i
det H(c(B) +ip + A1)
8w

du
@)l " / det H(c(B) +ip+ A1)’ (2.12)
[l <2]A = A2|+2/h

<
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Since |H (£, + i€o, B)|? is a real analytic function of (€1, €2, 8) on R? then due to
[11, Section 17] we conclude that |H(&; + i&a, B)| > Q(d[(¢1, &2, B8), N])¥, £24+£2 <
4/h?,0 < B < 1/(eh), where Q,w > 0, N = {(£1,&9,8) € R | H (&1 419, B) = 0}.

With regard to (2.11) we obtain that

9606, ¢(8) + in)| > min { 7. 01c(6) - X},

5 58) + i+ 2 = ) 2 min {12 e) = A |

From (2.10) taking into account (2.12) and (2.6), we get (2.7). By analogy with
obtaining the estimate of the integral in (2.10), we have (2.8). The proof is
completed.

3. Auxiliary statements

Lemma 3.1. Let for a polynomial matriz (m x m) A condition (0.11) holds.
Then there exist ®1,T > 0, 1,7 € Q such that (0.7) is true. Moreover, there
exist ' >0, vy€Q, 't >0, v2 € Q such that

V(U,T) c V(Pl”y) S W(@l,(pl) —N Ao(o-) < _I‘(l + |0.|2)7’ (31)
where V(T1,m) = {(0,7) €R™ : o +ir| <T1 (1 +]0]?)"}.

P roof We can represent the set W(®1, ) in the form W(®q,¢1) = {o €
R" | Inp € R*[det B(n) = 0A |np — o] < T(1 + |o|))¥1]}. Let v(r) = inf{|oc — 1| |
c €R*"AneR"AAg(o) > 0Adet B(n) =0A |o] =r}. From (0.11) it follows
that v(r) > 0 (r > 0). It is easy to see that for every ro > 0 there exists
C(ro) > 0 such that v(r) > C(rg), 7 € [0,70]. Due to the Tarski-Seidenberg
theorem [17] and its corollaries [8, Appendix A| we obtain that v(r) = +oo
as 1 — +oo or v(r) = Nr?#1(1 + o(1)) as r — +o0, where N > 0, p1 € Q.
Therefore v(r) > 2®; (1 +r2)*", r > 0, where ®; > 0, ¢; € Q. Hence (0.7) holds.
Applying the Tarski-Seidenberg theorem [17] and its corollaries [8, Appendix A]
to p(r) = sup{A1 € R | det(I(A1 +iXg) —A(0)) =0A0 € W(P1,p1) A|o| =1},
we conclude that u(r) < T (1 + 7“2)7, r > 0, where T" > 0, v € Q. For obtaining
this estimate we use the same reasoning as for obtaining the analogous estimate
for v(r). Therefore Ag(c) < —T'(1 + |0|?)?, 0 € W(®1,p2). As before applying
the Tarski-Seidenberg theorem [17] and its corollaries [8, Appendix A] to w(r) =
inf{n | det(I(A\1 +iX2) — A(c +i7)) =0AXN +T(1+72)7 >0A o] =rAn? =
lo|2 + |7|? Ao € R* A7 € R*}, we obtain that w(r) > T'1(1+72)",r > 0, where
'y > 0,71 € Q Thus (3.1) is true as was to be proved.
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Lemma 3.2. Let ®1,T" > 0, 1,7 € Q be a constants such that (3.1) holds.
Then there exist @3 > 0 and @2 € Q such that (0.8) is true.

P roof. Due to[9, Lemma 2|, we get
|det B(0)[2 > B (1+ |0)" (d[o, N{det B}))®,  o€R", (3.2)

where B > 0, a € Q, f € Q, moreover, 8 > 0 if N{det B} # § and 8 = 0
otherwise. Hence (0.8) holds. The lemma is proved.

Lemma 3.3. Let (0.12) holds. Then there exist ®3 € (0,1] and ¢3 € Q such
that (0.9) is true. Moreover, for all € > 0 there exist such Ts > 0,79 € Q
depending on € that

V(o,7) € V(L2,72) 1—hAo(o+1i7) > (85 —¢)(L+a[*)*.  (3.3)

P r o o f. Taking into account (0.12) and applying the Tarski—Seidenberg
theorem [17] and its corollaries [8, Appendix A] to u(r) = inf{1 —hX; | Iy €
R 3o € R" [det(A(0) — (A1 +iX2)I) = 0 A |o| = ]}, we conclude that (0.9) holds.
For obtaining this estimate we use the same reasoning as for obtaining the esti-
mate (0.7). Let € > 0 be fixed. As before applying the Tarski-Seidenberg theorem
[17] and its corollaries [8, Appendix A] to v(r) = {n | det(I(A1 + iX2) — A(o +
iT))A(@3—¢)(1+7r2)?2 +hA1—1 > 0A|o| = rAn? = |02 +|7]?Ac € R* AT € R},
we get v(r) > ['a(1 +72)72,r > 0, where I'y > 0,7, € Q. Therefore (3.3) is true.
The lemma is proved.

Lemma 3.4. Let &1, &3 > 0, &3 € (0,1], 1, @2, 3 € Q, @3 < 0, be
constants such that (0.7)-(0.9) hold. Let K(o,t) be defined by (2.3), (2.5), where

2 2\"
a1(0), ag(o) are the coefficients of equation (0.2), B(o) = %\IJ?E;)JR};}(Z(—IFEE')’LI’

R>0, ®2P3R > e, r€Q, w2+ @3+ 1 >0. Then for each multi-index o

ID2K (0, )| < Ko (14 o) e B4 (0,8) € R* x [0, 400),  (3.4)
where L > 0,1 € Q, Kjg > 0, Ko €R.

Proof Lete >0 such that 3 —e > 0,P9(P3 — )R > e be fixed. Let
I'1,T'2 > 0 and 71,72 € Q be constants such that (3.1), (3.3) are true. Denote
P() = min{Fl,Fg} Yo = min{O,'yh'yg}, (I)g = (I)3 —E.

We assume throughout the proof that (o,7) € V(I'g,v0).

At first, we consider (o,t) € (R*"\W(®1,¢1)) x [0, +00). With regard to Lem-
mas 3.1-3.3 we get /1 —eB(0)h < (1+|0|?)?® /(®2Rh). Taking into account
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Lemmas 2.1, 3.3 and setting ¢1(8(0)) = (—1 +ey/1— eﬁ(a)h) /(eB(o)h?), we
obtain that

A(B(0)) < e1(B(0)) < (e (1 +10f*)* /(@2R) — 1) /A <0 (3.5)
and
Ao(o +7) + e1(B(0)) < (e . q>2ci>3R) (1+]02)% /(@2Rh) <0.  (3.6)
According to Lemma 2.1, we have

le1(8(0)) = M(B(0))| > (e = Ve)\/1—eflo)h/h > K(1+ o) ¥T7/2, (3.7)

where 1 = degb, K > 0.
Now assume that (0,t) € W (®1, 1) x [0,+00). Set ca(B(c)) = L' (1 + \G\Q)I ,
where L' = min{1/h,T'/2}, I’ = min{0,~}. Hence,

Ao(o +i7) + e2(B(0)) < =T (1 +|a?)" /2. (3.8)

According to Lemma 2.1, we have

le2(B(0)) = M(B(0))| 2 T (1 +|of?)” /2. (3.9)

With regard to (2.2) all this implies that (3.4) holds for = 0.

Let us prove that it holds for || > 0. We have Ai(s) = —ai(s) + /D
A2(s) = —ai(s) — v/D(s) are the roots of A2+ 2a1(s)A+ag(s), s € C. Put po(s )
eh()\l(s)+)\2(s))7 01(8) — —)\Q(s)eh)‘l(s) _ /\1(3)6th2(5), /)2(3) = ehr(s) _l_eh)\z(s)7

h(B,A,8) = H(B,A — A1(8))H(B, A — A2(s)), s € C. Then pg, p1, po are entire
functions of s, h is a polynomial with respect to # and an entire function of s

and A.
We have

eMd
K(s,t)=T / Ni(B(0), M 5)
(&;(B(0)))

" [(Eccbzlo((z))(l)) + <_018> B2(a)po(s)e 2
: Gﬁ) Alodon(e)e™™ + (3)8) 5(0)/)2(3)63—’“\]
X / %, s=o+1it, t>0, (3.10)

(¢ (B(e)))
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where ¢;(8(0)) = ¢;(B(0)) + Ao(o +i7), j=1if 0 € R* \ W(P1,¢1) and j = 2
ifoe W(¢1,<P1)-
It is clear that for each multi-index o we have

(D2po(0)) e BB <NE, (14 o), o e R, (3.11)

To obtain analogous estimates for p; and ps we use the Cauchy formula for
derivatives of a holomorphic function. Put r(c) =T (1 + |o]?)”° /2. We integrate
over the polydisk {|s; — 1| =7(0)} X ... x {|sp, — 0| =7(0)}. With regard to
(3.6), (3.8) we conclude that for each multi-index «

(D2pi(0)) e ¥ <N (14 ]o)"e!,  oeR, I=1,2. (3.12)

Therefore for each multi-index «, |a| > 0, we have

dA.

(o al?)"e # max o
|DgK (0,t)] < Ny (1 + o ) &1(B(0))] kSaIA/ ‘(h(,@(a),k,a))k

¢;(8)

With regard to (2.8), (3.5)-(3.9) we conclude that (3.4) holds for || > 0. The lem-
ma is proved.

Lemma 3.5. Let 1,99 > 0, &3 € (0,1], 192,903 € Q, w3 < 0, be con-
stants such that (0.7)—(0.10) hold. Then for py, p1, p2 defined by (0.10) we have
po, p1,p2 € M.

P r o o f. Taking into account Lemma 3.3 and using the same reasoning as
for obtaining estimates (3.11), (3.12), we conclude that pg, p1, p2 € M.

4. Conditions for stabilizability

Statement 4.1. Assume that for equation (0.2) conditions (0.11) and (0.12)
hold. Then there exist such functions pg,p1,p2 € M that for any p € Ny there
erist ¢ € Ny and a continuous function v(t) on [0,+00), v(t) — 0 as t — +o0,
such that for each solution w of equation (0.2) with control (0.3) under the initial

. w q w »
condition ( O/t ) € €5 we have ( ow /ot ) € C, and
w(-, 1) P w 1
KL [Py <0 | Couer) oW
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Proof. It follows from Lemmas 3.1-3.3 that conditions (0.7)—(0.9) hold. Let
p0, P1, P2 be functions of the form (0.10). Let K(o,t) be defined by (2.3), (2.5),
where a1(0),a¢(o) are the coefficients of equation (0.2), 8 defined in Lemma 3.4.
Then By = —bFy, B1 = —bP;. Due to Lemmas 3.4, 3.5 we have that pg, p1,02 € M
and estimate (3.4) is true.

Let 8’ be the dual space for 8. Let p € Ny be fixed. Assume that g >
P+ Kyini1 + 7, w® € €, where k11 is the constant from the estimate (3.4).
For the system

ow(z,1t)
T:A (Dg) w(z,t) +b(Dyg) (Po (Dg) w(z, t — 2h) + P (D) w(z,t — h)),
z€eR", t>2h, (4.2)

consider a problem with the initial condition
w(r,t) =w'(z,t), =z €R" te][0,2h] (4.3)

Applying the Fourier transform (with respect to z) to problem (4.2), (4.3) in &,
we obtain
dv(o,t)
T:A(a)v(a, t) + b(o) (Py(o)v(o,t —2h) + Py(o)v(o,t — h)), t > 2h,(4.4)
oo )=(,t) (), te[02h) (45)

where v(-,t) = Fw(-,t), v° = Fw’. With regard to [1, Theorems 6.2, 6.4] and
Lemma 3.4 we conclude that

2h
v(o,t)=K (0,t — 2h)v° (0, h) + b(c) Py(0) /K(O’, t—1 —2h)0° (o, 7)dr
, 0
+b(0)P, (o) / K(o,t — 7 — W)'(o,7)dr,  t>2h, (4.6)
0

is a solution of (4.4), (4.5) in 8 and v(o,-) € C[0,4+00), v(c,-) € C(2h,+00).
Hence, w(-,t) = F1v(-,t) is a solution of (4.2), (4.3) in §'.

Now we prove that w € C% and (4.1) is true. Further throughout the proof
we assume that z € R*, o0 € R", t > 2h. Let e(z) be an infinite differentiable

function on R", let suppe C {z € R" | |z| < 1}, and let ) e(z—k) = 1. Denote
lezm
wi(z,t) = e(z)w(z + &, 1), v2(-,t) = FwO(-,t). With regard to (4.6) we have

2h
vp(o,t)=K (0,t — 2h)v) (0, h) + b(0) Py(0) /K(a,t — 7 —2h)v)(o,T)dT
0

+b(0)P(0)K (0,t — T — h)v)(o,7)dT  (8'), t>h (4.7)
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is a solution of (4.4), (4.5) with v* = v therefore wy(z,t) = (F~lvg(-, 1)) (z) is
a solution of (4.2), (4.3) in 8 with w® = w2, where k € Z".

Obviously, ||w2(-,7')||f1y <M HWO(',T)”?Y (1+ |k|)?, 7 € [0,2h], where M > 0
does not depend on 7 € [0,2h] and k € Z". Then we have |0>‘D§ (oPv(o, t))| <
C”|w0mi(1 + |k|)?, where C > 0, |B] + |\ < ¢, o] = n+ v+ 1. With
regard to (4.7) and Lemma 3.4 that gives |Dg (P (o, t))‘ < ‘”wOmg 1+
|a|)_”_1e_tL(1+|"|)l(1+|k|)7, where C" > 0, |\| = deg B+ Kyynt1+n+1, |8 <p.
Applying the inverse Fourier transform with respect to o, we get ‘D;f wk(:c,t)‘ <
Cu®) W] (1 + lal) =+ (L + [k]YY, where C* > 0, w(t) = (1+ 0! if
| < 0 and v(t) = exp{—tL} otherwise. Since (1+ |k|]) < (1 + |z + k|)(1 + |z|)
that leads to ‘Dgwk(x,t)‘ < C*u(t) |”W0”|3 (14 |z +k))"(1 + |z|) ™. Hence,
w(z,t) = > pezn Wr(z — k,t), w € C5 and (4.1) is true.

It remains to show that the solution w is unique in C%. It is sufficient to
prove that for system (4.2) the initial problem under the condition w(z,t) = 0,
z € R, t € [0,2h], has only the trivial solution w in C%. Let w be a solution of
this problem and w € C%. According to the initial condition, we have w(z,t) =0
on R™ x [0,2h]. Suppose w(z,t) = 0 on R” x [2(k — 1)h,2kh] and prove that
w(z,t) =0 on R™ x [2kh,2(k + 1)h], (k € N). It is easy to see that each solution
of system (4.2) on R" x [2kh,2(k + 1)h] under the initial condition w(z,t) = 0,
z € R" t € [2(k —1)h,2kh] is a solution of the Cauchy problem

ow(z,t)
ot

= A(Dg)w(z,t), w(z,0)=0, z € R*, t € [2kh,2(k + 1)h].
(4.8)

With regard to [7, §4] that gives w(z,t) = 0 on R* x [2kh,2(k + 1)h]. Thus
w(z,t) =0 on R” x [0,400). The statement is proved.

It follows from the proof of Statement 4.1 that conditions (0.7)—(0.9) are suf-
ficient for stabilizability of (0.5) (moreover, in this case P defined by (0.10) is a
stabilizing control). Thus Theorem 0.1 is proved.

Statement 4.2. If for system (0.5) there ezists oy € R" such that Ap(oy) >0
for all matrices (m x m) P € M, then this system is not stabilizable in C>° .

Proof. Letpg,pi,p2 € M. Let det{)\oI — A(Uo) + b(o‘o)(Po(Uo)e_Zh)‘o +
Py(09)e )} = 0 and R\¢ > 0 for some gy € R?, \g € C, and let vy, |vg| = 1, be
a vector such that (AgI — A(og) +b(0g) (Py(og)e™ 20 + Py (0p)e "))y = 0. Con-
sider system (0.5) with the control u(-,t) = Py (D) w(-,t—2h)+P; (Dy) w(-,t—h),
i.e., the system of the form (4.2), under the initial condition w(z,t) = exp{tAo +
i(z,00) }vo, z € R”, t € [0,2h], where (-,-) is the scalar product corresponding to
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the Euclidean norm in R™. It is easy to see that w(z,t) = exp{tAo + i(z, 00) }vo,

x € R" ¢t € [0,h], is a solution of this problem. Since |w(z,t)] = exp{tR o}

and R\g > 0, then lim ||w(-,t)||2 > 0, i.e., condition (0.4) is not satisfied.
t—+o00

Therefore system (0.5) is not stabilizable in C_7°°. The statement is proved.

From this statement we obtain

Corollary 4.1. If the system (0.5) is stabilizable in C7°°, then (0.11) holds.

With regard to Statement 4.1 and Corollary 4.1 we conclude that Theorem 0.2
is true.

Remark 4.1. Let for system (0.5) conditions (0.11), (0.12) be valid. The
stabilizing functions pg,p1,p2 € M that have been found in the proof of the
Statement 4.1 have the form (0.10) and satisfy estimates (3.11), (3.12). Denote
by u the control of the form (0.3). Taking into account Statement 4.1 (estimate
(4.1)) and using the same reasoning as for obtaining this estimate, we conclude
that for each s € N there exists ¢ € N and a continuous function () on [0, +00),

p(t) — 0 as t — 400, such that for all ( Bwu;at € € we have u € C} and
a
. S w
EUTERT] (W] |
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