Matematicheskaya fizika, analiz, geometriya 2003, v. 10, No. 2, p. 243–248

Characterization of condensations of σ -compact locally compact groups and applications to invariant measures

S.S. Gabriyelyan

National Technical University "KhPI" 21 Frunze Str., Kharkov, 61002, Ukraine

E-mail:gabrss@kpi.kharkov.ua

Received December 14, 2001 Communicated by G.M. Feldman

We obtain necessary and sufficient conditions for existence on a topological group of a stronger σ -compact locally compact topology. An application of the obtained result for measurable topological group with an invariant measure are given.

The concept of the condensation or the *i*-isomorphism is a very important one in the category of topological groups (see [6]). A mapping $p: X \to G$ is said to be a condensation (*i*-isomorphism) if p is algebraically an isomorphism and pis continuous. A group G is called a condensation of group X (or we said Xcondensates onto G) if there exists an *i*-isomorphism p from X onto G.

The main goal of this paper is to find conditions for a topological group G which guarantees existence of a stronger σ -compact locally compact topology on G. In fact, we give an answer to the following question: When a topological group G is a condensation of a σ -compact locally compact group X?

Evidently such group G is σ -compact. Thus our problem is just to characterize the smallest class \mathcal{A} of topological group such that \mathcal{A} is closed with respect to condensation and $\mathcal{A} \supset \mathcal{A}$, where \mathcal{A} is the class of σ -compact locally compact groups.

As a conclusion of the paper we consider an application of the main result to the theory of invariant measures on groups.

Let F be a subset of G. Define $F^{(n)}$ by induction: $F^{(1)} = F, F^{(n+1)} = F \cdot F^{(n)}, \forall n \in \mathbb{N}$. Denote by $\omega(X)$ the weight of a space X. Denote also by \mathcal{B}_X the Borel σ -algebra of X. In this paper all groups are T_0 -group.

The following theorem is the main result of this paper.

© S.S. Gabriyelyan, 2003

Mathematics Subject Classification 2000: 22D05, 22D99.

Theorem 1. A group G is a condensation of a σ -compact locally compact group X iff G is a σ -compact and there exists a compact set $F \subset G$ such that:

- (i) there exist $y_1, y_2, \dots \in G$ such that $G = \bigcup_{k=1}^{\infty} y_k \cdot F$;
- (*ii*) F is symmetric;

(iii) there exist x_1, \ldots, x_n such that $F \cdot F \subset \bigcup_{i=1}^n x_i \cdot F$.

Assume, in addition, that p is a condensation of X onto G. Then p is a Borel isomorphism, $\omega(X) = \omega(G)$, and if a group $Y \in A$ condensates onto G, then X and Y are topologically isomorphic.

P r o o f. Necessity. Let U be a symmetric neighbourhood of e in X with the compact closure such that U generates an open subgroup X. It is obvious that $F = p(\bar{U})$ satisfies conditions (i)-(iii).

Sufficiency. Let [F] be the subgroup generated by F. By condition (i) the collection of left cosets is at most countable. Therefore it is sufficient to prove the following theorem.

Theorem 2. Let G be a topological group. The following conditions are equivalent:

- 1. There exists an i-isomorphism p of a σ -compact locally compact compactly generated group X onto G.
- 2. There exists a symmetric compact set $F \subset G$ such that F generates G and there exist x_1, \ldots, x_n such that $F \cdot F \subset \bigcup_{i=1}^n x_i \cdot F$.
- 3. There exists a symmetric compact set $F \subset G$ such that F generates G and the collection of sets $V_F = \{V : \text{ there exists } n_0 \text{ such that } \forall n \geq n_0 \text{ there is}$ a neighbourhood U_n of the identity e in G with $V = U_n \cap F^{(n)}\}$ is not empty.

Moreover, p is a Borel isomorphism, $\omega(X) = \omega(G)$ and if a group $Y \in A$ condensates onto G, then X and Y are topologically isomorphic.

Condition 2 connects topological properties of G (i.e., Condition 1) with algebraic properties of F (i.e., a compact subset which generates G). Hence this result we can consider as an answer (in our case) on question III [6].

P r o o f. $1 \Rightarrow 2$. Let U be a symmetric neighbourhood of e in X with the compact closure such that U generates X. It is obvious that $F = p(\bar{U})$ satisfies Condition 2.

2. \Rightarrow 3. Without loss of generality we can assume that $e \in F$. (Let $F_1 = F \cup \{e\}$. Then we have $F_1 \cdot F_1 = F \cdot F \cup F \cup \{e\} \subset \bigcup_{i=1}^n x_i \cdot F_1 \cup F_1$). Therefore $F^{(l)} \subset F^{(l+1)}$. Let us show that V_F is not empty.

First, we prove that for all natural $l \ge 2$ there exists a neighbourhood U_l of e such that

$$F^{(2)} \cap U_l = F^{(l)} \cap U_l, \quad l \ge 2.$$
(1)

In fact, an induction argument based on Condition 2 shows that $F^{(l)} \subset \bigcup_{i=1}^{m_l} z_{li} \cdot F$. If $z_{li} \notin F$, then $e \notin z_{li} \cdot F$. Let W be a neighbourhood of e such that $W \cap z_{li} \cdot F = \emptyset$ for all indices i such that $z_{li} \notin F$. Let $J = \{i : z_{li} \in F\}$. Then

$$F^{(l)} \cap W \subset (\bigcup_{i \in J} z_{li} \cdot F) \cap W \subset (F \cdot F) \cap W = F^{(2)} \cap W \subset F^{(l)} \cap W.$$

Hence, $F^{(2)} \cap W = F^{(l)} \cap W$. Set up $U_l = W$ to get (1).

Let $\{U_k^{\alpha}\}_{\alpha\in J_k}$ be a set of all neighbourhoods of e such that U_k^{α} satisfies equation (1) for l = k. Set up $W_k = \bigcup_{\alpha\in J_k} U_k^{\alpha}$ a symmetric neighbourhood of e satisfying equation (1) for l = k. Set up $V_k = F^{(k)} \cap W_k$. To prove Condition 3 (i.e., $V_F \neq \emptyset$), it suffices to show that $V_k = V_{k+1}$ for all $k \ge 4$. Since

$$F^{(2)} \cap W_{k+1} \subset F^{(k)} \cap W_{k+1} \subset F^{(k+1)} \cap W_{k+1} = F^{(2)} \cap W_{k+1},$$

then $W_{k+1} \subset W_k$ and $V_{k+1} \subset V_k$, for all $k \geq 2$.

Prove the inverse inclusion. Let $x \in V_k = F^{(k)} \cap W_k = F^{(2)} \cap W_k$. If $k \ge 4$ we choose a symmetric neighbourhood W_x of e such that $F^{(k+3)} \cap W_x = F^{(2)} \cap W_x$ and $x \cdot W_x \subset W_k$. Then

$$(x \cdot W_x) \cap F^{(k)} = (x \cdot W_x) \cap F^{(k+1)}.$$
 (2)

In fact, an element $z \in (x \cdot W_x) \cap F^{(k+1)}$ may be represented in the form $z = x \cdot y \in F^{(k+1)}$, where

$$y = x^{-1} \cdot z \in W_x \cap (F^{(2)} \cdot F^{(k+1)}) = W_x \cap F^{(k+3)} = W_x \cap F^{(2)} \subset F^{(2)}.$$

Therefore $z = x \cdot y \in (x \cdot W_x) \cap (F^{(2)} \cdot F^{(2)}) = (x \cdot W_x) \cap F^{(4)} \subset (x \cdot W_x) \cap F^{(k)}$.

Put $W_k^* = \bigcup_{x \in V_k} (x \cdot W_x) \subset W_k$. Then $W_k^* \cap F^{(k)} = V_k = W_k^* \cap F^{(2)}$, and we have

$$V_k = W_k^* \cap F^{(k)} = (\bigcup_{x \in V_k} (x \cdot W_x)) \cap F^{(k)} = \bigcup_{x \in V_k} (x \cdot W_x \cap F^{(k)})$$

$$= \bigcup_{x \in V_k} (x \cdot W_x \cap F^{(k+1)}) = (\bigcup_{x \in V_k} (x \cdot W_x)) \cap F^{(k+1)} = W_k^* \cap F^{(k+1)} = W_k^* \cap F^{(2)}.$$

Hence, $W_k^* \subset W_{k+1}$ and $V_k = W_k^* \cap F^{(k)} \subset W_{k+1} \cap F^{(k+1)} = V_{k+1}$.

 $3. \Rightarrow 1$. It is easy to prove that the system of sets $\{x \cdot V\}$ and $\{V \cdot x\}$, where $x \in G, V \in V_F$, is an open base of a topology τ on G.

For this we verify five conditions (i)-(v) of Theorem 4.5 [1]. Note that if $V \in V_F$ and U is a neighbourhood of e then $V \cap U = (U_n \cap U) \cap F^{(n)} \in V_F$.

Matematicheskaya fizika, analiz, geometriya, 2003, v. 10, No. 2

(i) Let U be a neighbourhood of e in G such that $U^{(2)} \subset U_{2n_0}$. Let $W = V \cap U \in V_F$. Then

$$W^{(2)} = (V \cap U) \cdot (V \cap U) = [(U_{n_0} \cap U) \cap F^{(n_0)}] \cdot [(U_{n_0} \cap U) \cap F^{(n_0)}]$$

$$\subset (U_{n_0} \cap U)^{(2)} \cap [F^{(n_0)} \cdot F^{(n_0)}] \subset U^{(2)} \cap F^{(2n_0)} \subset U_{2n_0} \cap F^{(2n_0)} = V.$$

(ii) Let $P = P^{-1}$ be a neighbourhood of e in G such that $P \subset U_{n_0}$ ([1, Theorem 4.6]). Then $W = P \cap V = P^{-1} \cap V \in V_F$ and

$$W^{-1} = P^{-1} \cap V^{-1} = P^{-1} \cap U_{n_0}^{-1} \cap F^{(n_0)} \subset P^{-1} \cap F^{(n_0)} \subset U_{n_0} \cap F^{(n_0)} = V.$$

(iii) Let $V = U_n \cap F^{(n)}$, $n \ge n_0$, $x \in V$ and U be a neighbourhood of e in G such that $x \cdot U \subset U_{n_0} \cap U_{2n_0}$. Set up $W = V \cap U \in V_F$. Since $x \in V$, then $x \in F^{(n_0)}$, thus $x \cdot F^{(n_0)} \subset F^{(2n_0)}$. Then

$$x \cdot W = x \cdot V \cap x \cdot U = x \cdot U_{n_0} \cap x \cdot U \cap x \cdot F^{(n_0)} \subset U_{2n_0} \cap F^{(2n_0)} = V.$$

(iv) Let $V = U_n \cap F^{(n)}, n \ge n_0$ and $x \in G$, then $x \in F^{(\bar{n})}$ for some \bar{n} . Let U be a neighbourhood of e in G such that $x \cdot U \cdot x^{-1} \subset U_{n_0+2\bar{n}}$. Set up $W = U \cap V$, then

$$x \cdot W \cdot x^{-1} = (x \cdot U \cdot x^{-1}) \cap (x \cdot V \cdot x^{-1})$$
$$= (x \cdot U \cdot x^{-1}) \cap (x \cdot U_{n_0} \cdot x^{-1}) \cap (x \cdot F^{(n_0)} \cdot x^{-1}) \subset U_{n_0 + 2\bar{n}} \cap F^{(n_0 + 2\bar{n})} = V.$$

(v) Let $V_1, V_2 \in V_F, V_i = U_n^i \cap F^{(n)}, n \ge n_0^i, i = 1, 2$. Set up $n_0 = \max(n_0^1, n_0^2)$. Then for all $n \ge n_0$ we get

$$V_1 \cap V_2 = (U_n^1 \cap U_n^2) \cap F^{(n)} \in V_F.$$

Let us show that τ is locally compact. It will be proved if we show that F is compact in τ . Let $\{A_{\alpha}\}_{\alpha \in I}$ be an open covering of F. We can assume without loss of generality that $A_{\alpha} = x \cdot V_x$, where $V_x \in V_F, x \in F$. Then $F \subset \bigcup_{x \in F} (x \cdot U_{n,x} \cap x \cdot F^{(n_x)}), n_x \geq 2$. In particular, $F \subset \bigcup_{x \in F} x \cdot U_{n,x}$. Thus there exist x_1, \ldots, x_m such that $F \subset \bigcup_{i=1}^m x_i \cdot U_{n,x_i}$. Put $V_{x_i} = U_{n,x_i} \cap F^{(n_{x_i})}$. Since $F \subset x_i \cdot F^{(2)} \subset x_i \cdot F^{(n_{x_i})}$, then

$$\bigcup_{i=1}^{m} x_i \cdot V_{n,x_i} = \bigcup_{i=1}^{m} [(x_i \cdot U_{n,x_i}) \cap (x_i \cdot F^{(n_{x_i})})] \supset \bigcup_{i=1}^{m} [(x_i \cdot U_{n,x_i}) \cap F]$$

= $F \cap \bigcup_{i=1}^{m} (x_i \cdot U_{n,x_i}) = F.$

If $x_1, x_2 \in G$ then there exists a neighbourhood U of e such that $x_2 \notin x_1 \cdot U$. Let $V \in V_F$. Then $V \cap U \in V_F \subset \tau$ and $x_2 \notin x_1 \cdot (U \cap V)$. Therefore the topology τ has the property T_0 and hense is Hausdorff ([2, 4.8]).

Let X be G as an abstract, equipped with the topology τ . Then X is a compactly generated locally compact group (F generates G). Let p be the identity

Matematicheskaya fizika, analiz, geometriya, 2003, v. 10, No. 2

246

map from X onto G. Then p is continuous. In fact, let U be a neighbourhood of e in G and $V \in V_F$. Then $V \cap U \in V_F$ is a neighbourhood of e in X and $p(V \cap U) = V \cap U \subset U$. Condition 1 is proved.

Let us prove the rest of the statements of the theorem. First, we prove that $p(\mathcal{B}_X) = \mathcal{B}_G$. It is sufficient to prove that $p(\mathcal{B}_X) \subset \mathcal{B}_G$ because p is continuous. Since p is bijection, X is generated compactly and \mathcal{B}_X is the smallest σ -algebra containing all open sets, it is sufficient to prove that $B_k = A \cap F^{(k)} \in \mathcal{B}_G$, where $A \in \tau, k \geq n_0$. Moreover, we prove that

$$B_k = A \cap F^{(k)} = C_k \cap F^{(k)},\tag{3}$$

where C_k is open in the original topology.

For all $x \in B_k$ there exists $V_x \in V_F$ such that $x \cdot V_x \subset A$ and $V_x = U_{n,x} \cap F^{(n_x)}, n_x \geq 2k$. Since $x \in F^{(k)}$ and $n_x \geq 2k$ then $F^{(k)} \subset x \cdot F^{(n_x)}$. Hence,

$$B_k = F^{(k)} \cap [\bigcup_{x \in B_k} x \cdot (U_{n,x} \cap F^{(n_x)})] = F^{(k)} \cap [\bigcup_{x \in B_k} (x \cdot U_{n,x} \cap x \cdot F^{(n_x)})]$$

$$= \bigcup_{x \in B_k} (x \cdot U_{n,x} \cap x \cdot F^{(n_x)} \cap F^{(k)}) = \bigcup_{x \in B_k} (x \cdot U_{n,x} \cap F^{(k)}) = F^{(k)} \cap (\bigcup_{x \in B_k} (x \cdot U_{n,x})).$$

Denote by C_k the open set $\bigcup_{x \in B_k} (x \cdot U_{n,x})$. Thus equality (3) is proved.

Let us show that $\omega(X) = \omega(G)$. Let $\{U_{\alpha}\}_{\alpha \in I}$ be a base of the topology in Gand let $x \cdot V$ be an element of the base of the topology on $X, x \in F^{(k)}, V \subset F^{(n)}$. Then $F^{(n+k)}$ contains the open set $x \cdot V$. According to (3), there exists an open set U in G such that $x \cdot V = F^{(n+k)} \cap U$. Let $U = \bigcup_{\beta \in J} U_{\beta}$. Then $x \cdot V = \bigcup_{\beta \in J} [F^{(n+k)} \cap U_{\beta}]$. Moreover, $F^{(n+k)} \cap U_{\beta} = (F^{(n+k)} \cap U) \cap U_{\beta} = U_{\beta} \cap x \cdot V$ is open in X. Thus some subcollection M of the set $E = \{U_{\alpha} \cap F^{(l)}, \alpha \in I, l = 1, 2, ...\}$ forms the topology in X. But $Card(M) \leq Card(E) \leq Card(I \times \mathbb{N}) = Card(I)$. Hence, $\omega(X) \leq \omega(G)$. The inverse inequality follows from Theorem 3.1.22 [1].

Let G = t(Y), where t is a condensation of a σ -compact locally compact group Y onto G. Let τ' be the topology on G induced by the topology on Y $(U \in \tau' \text{ iff } t^{-1}(U) \text{ is open in } Y)$. Since the original topology is weaker then τ and τ' therefore $\tau = \tau'$ ([2, 6.19]). Hence X and Y are topologically isomorphic. The theorem is proved.

R e m a r k. It may happen that conditions (ii) and (iii) of Theorem 1 are redundant.

Now we give an application of Theorem 1 to A. Weil's Theorem [3].

Definition. A group G is called a measurable topological group with a nontrivial σ -finite (left) invariant measure μ if:

1) G is a topological group;

2) μ is regular on \mathcal{B}_G ;

Matematicheskaya fizika, analiz, geometriya, 2003, v. 10, No. 2

3) there exists a σ -algebra $\mathcal{B} \subset \mathcal{B}_G$ such that (G, \mathcal{B}) is a measurable group (i.e., conditions (M) and (M') are hold, (see [3, Appendix 1])).

The definitions of a locally limited topology and a limited neighbourhood are represented in [3].

Theorem 3. Assume that G is a measurable topological group with a nontrivial σ -finite (left) invariant measure μ . Assume also that there exists a compact subset $F \subset G$ such that $\mu(F) > 0$. Then G = p(X), where p is a condensation of a σ -compact locally compact group X and $\mu = p(m_X)$, where m_X is the Haar measure on X.

P r o o f. A. Weil has shown [3, Appendix 1] that on G we can impose a locally limited topology τ^* . Let F be a compact subset such that $\mu_F > 0$. Then there exist symmetric limited neighbourhoods U and V of e in τ^* such that $V \cdot V \subset U \subset F \cdot F^{-1}$ [3]. Hence, there exist x_1, \ldots, x_n such that $V \cdot V \subset \bigcup_{i=1}^n x_i \cdot V$. Let \overline{V} be a closure of V in τ . Then \overline{V} is a symmetric compact and

$$\overline{V} \cdot \overline{V} \subset \overline{V \cdot V} \subset \overline{\bigcup_{i=1}^n x_i \cdot V} = \bigcup_{i=1}^n x_i \cdot \overline{V}.$$

Let $[\bar{V}]$ be the subgroup generated by \bar{V} . Since μ is σ -finite, the collection of (left) cosets is at most countable. Thus \bar{V} satisfies the conditions of Theorem 1 on F. It follows from uniqueness of the Haar measure that the last assertion is valid.

We remark that this result is well known for a standard group G (see [4]). In a more general situation, an analogue of Theorem 3 (with a quasi-invariant measure) is known for groups of the second category only [5].

References

- [1] R. Engelking, General Topology. Panstwowe Wydawnistwo Naukowe, Warszawa, Manuscript of the second edition (1985).
- [2] E. Hewitt and K.A. Ross, Abstract harmonic analysis. V. 1. Springer-Verlag, Berlin, Göttingen, Heidelberg (1963).
- [3] A. Weil, L'integration dans les groupes topologiques et ses applications. Actual. Scient. Ind., Paris (1940), No. 869, 224 p.
- [4] G.W. Mackey, Borel structure in groups and their duals. Trans. Amer. Math. Soc. (1957), v. 85, No. 1, p. 134-165.
- [5] Ng Kai-Wang, Quasi-invariant measures in groups of second category. J. London Math. Soc. (1973), v. 7, No. 2, p. 171–174.
- [6] А.В. Архангельский, Классы топологических групп. Успехи мат. наук (1981), т. 36, вып. 3(219), с. 127–146.