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The time-optimal problem for a linear system which matrix has the spect-
rum o(A) = {(2k — 1)A\}}_, is considered. This problem is reduced to the
power Markov moment min-problem with even gaps. The new generating
function is suggested for finding the optimal time. The explicit form of the
polynomial for which the set of nonnegative roots coincides with the set of
switchings of the time-optimal control is given. The analytical form of the
0-controllability set at time © is obtained.

1. Introduction
Let us consider the linear time-optimal problem
T=Az +bu, |ul<1l, =ze€kE,,
z(0) =2 x(©)=0, © — min, (1.1)

rank(b, Ab, A%b,..., A" 'b) = n,

where A is a matrix of dimension n X n, b is a n-dimensional vector, © is a time
of motion from the point z° to the origin.
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It follows from the maximum principle [1] that the time-optimal control u(t)
is a piecewise constant function on the interval [0, ©] taking values £1 and having
a finite number of points of discontinuity. Moreover, if all eigenvalues of A are real
then the control u(t) has no more than n — 1 switchings (points of discontinuity).

Thus, the solution of the time-optimal problem is reduced to finding the op-
timal time ©, the switchings 11,75, ..., Tk, kK < n—1, and the sign of the control
u(t) at the interval [T}, ©] for all points 2° from the O-controllability set. Simul-
taneously the problem arises to describe the 0-controllability set of system (1.1),
i.e., the set of all initial points z° from which it is possible to reach the origin at
the time O.

The solution of the linear time-optimal problem by reducing of this problem to
the abstract moment problem, namely to the moment L-problem, was proposed
by N.N. Krasovskii [2]. The abstract moment L-problem is to determine the linear
functional taking the given values at the given n elements and having the minimal
norm. In terms of the abstract moment problem a number of numerical methods
for calculation of the time-optimal control are developed.

o0
If the restrictions on control have the form ( [ |u()|?> d7)'/2 < L, it is possible
to
to obtain the algebraic equation to determine the optimal time [2]. However,

when the restrictions are of the form |u(¢)| < 1, in [2] it is suggested to use the
numerical methods which are based on minimization of some function with certain
restrictions on variables.

Another approach to the problems with restrictions |u(t)| < 1 based on the
reduction of the time-optimal problem to the Markov moment min-problem [3]
was proposed in [4, 5]. This problem is completely solved for the power and the
trigonometric cases. Namely, the polynomials for determining of the optimal time
and the switchings [4-7] are found. One of the ways to obtain such polynomials is
as follows. A certain rational function is associated to the moment min-problem
and the fact that there exist certain relations between the coefficients of expansion
of the rational function in the series is used. In [4] the solution of the time-optimal
synthesis problem is also given.

The present paper develops the work [5]. We give the solution of the time-
optimal problem (1.1) for the case when the spectrum of the matrix A has the form
o(A) = {(2k—1)A}}_, reducing this problem to the Markov moment min-problem
with even gaps.

In the case of such matrix the time-optimal problem (1.1) is reduced to the
following form:

T =2k — DAz +u, k=1,...,n, [u <1,
(1.2)
z € B, z(0)=1% 2z2(©)=0, © — min.
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Let us reduce this problem to the Markov moment min-problem. Suppose the
control u(t) transfers the point z° to the origin in the time ©. Then the following
equalities hold

(S}
Ty = _/e(%l)” u(rt)dr, k=1,...,n. (1.3)
0

Consider the case A < 0. Then as it is well known for any z° € R" there exist
such a time © and a control u(t), |u(t)| < 1, that (1.3) holds.
Having changed the variable ¢t = e *" we rewrite equalities (1.3) in the form

e~ AO®

1
=y [ #uwd k=1..n (14)
1

Thus, the solution of the time-optimal problem (1.2) coincides with the solu-
tion of the following Markov moment min-problem

e)
o = /t%_2 w@dt, k=1,...,n, [u@®)|<1, te[1,0], 6 — min, (1.5)
1

where s = \z¥, © = 749,

Further we denote by 7} the points of discontinuity of the function u(t) solving
the moment min-problem (1.5). Note that T; = e~*”¢ where T} are switchings
of the time-optimal control of problem (1.2). In what follows we also call © the
optimal time and 7T} the switchings.

In [5] such moment problem is called the Markov moment min-problem with
even gaps. As it is noted earlier, the method of solving of problem (1.5) given in [5]
is based on the using of properties of some rational function. In the present paper
we suggest to introduce into consideration the new rational function, namely the
hyperbolic area-tangent. This allows to obtain the polynomial for finding the
optimal time © the degree of which is almost two times less than the degree of
the polynomial considered in [5]. In the Markov moment problem such function
was not considered earlier (see [8]). Moreover, we give the explicit form of the
polynomial for which the set of nonnegative roots coincides with the set of all
switchings T;. The analytical description of the 0-controllability set of system (1.2)
is also given.

2. The equations for the optimal time

Consider problem (1.2) which is equivalent to problem (1.4). Further we
consider only such points 20 for which the optimal control has n — 1 switchings.
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Then the solving of system of the moment equalities (1.4) leads to the nonlinear
system of equations

n-1 52k—1 N\  1\~51..0
(—1)" Z(_l)z‘+1fi2k—1 _ © +(=1) 5 (2k 1)"”“%, k=1,...,n, (2.1)
i=1

where 7 is a control on the last interval [Tj,_1, 0] (& = #1). Let us call the control
u(t) to be the control of the first kind (the second kind respectively), if & = —1
(@ = 41 respectively).

Let us denote the right-hand sides of the equations of system (2.1) by Cor_1
(k=1,...,n) ie.

O%1 4 (1) — (2k — 1)adz)

Cop—1 = 5

k=1,...,n. (2.2)
The case of the even n. Consider system (2.1) for the even n
(n = 2p). Let us assume that the switchings T4, T, ...,T,—1 are known. Let us

supplement system (2.1) by analogous equations for £ > n+1 and in what follows
let us consider the infinite system of the equations

n—1
D ()T = Oy, k=1,2,... . (2.3)
i=1

Consider the equality

n—1 j:, [e's) C
z : i+1 i _2 : 2k—1
(—].)Z arth ; = m, zeC. (24)
=1 k=1

Here and further the value |z| is sufficiently large such that considered series are
converged. Relations (2.3) are obtained from equality (2.4) if we expand the

T.
functions arth — (i = 1,...,m — 1) into series and equate the coefficients at
z
the same powers of z. Taking into account that arthxz 4+ arthy = arth 1$_:_ L ,
Ty

equality (2.4) will be written in the form

b n—=2 4 n—4 . 2 o0
ar th 2°= 25? + Op—42 + ...+ b2z + b Cok—1 (2.5)
2t an_32" 3+ +azzd +arz kz—1 2k — 1)z%k—1"
Represent the rational function
P(z)
R(z) = , 2.6
©)= 50 (26)
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where P(2) = by_92" 2 4+ by 42" 4 ... +b22? + by, Q(2) = 2" 1 +ap_32" 3 +
...+ a3z® + a1z, in the form of the series

o0

R(z) = Z;,’jj. (2.7)

k=1

Then it follows from equalities (2.5), (2.7) that

k-1 i
1
1 =C1, Yok—1 = <C2k—1 —) " Copziy 272j1'72i2j+1>a k=23,....

(2.8)
From relations (2.8) we obtain the equalities
Y133 5 ..o (2K —1)yek
k—1
—1 77 2mY3 .. X e 172k-2i-1
~
)
- 0 -1 2 - o -
Cop_1 = M _ 1721 1223 |, k=1,...,n. (2.9)
1=
0 0 0 .. 2’}’1’)’3
0O 0 0 ... 72

Let us obtain the equation for finding the optimal time © in the case of the
even n. From the equality

bnfgz”_2 + bn,42”_4 + ...+ b222 + bg . > Yok—1

— 2.10
2Vl pg, 3203 4. 4+ as3zd +arz p z2k—1 (2.10)
it follows that
a1y3 +azys +... +apn_3Yn—1 + Yny1 =0,
a1Ys +a3yr +... +an 3Yn+1 + Va3 =0,
@1Yn+1 + @3Vn+3 + ... + ap—3Y2n—3 + Y2n—1 = 0,
whence
73 Y5 N (RS
75 Y7 <o Tn+3
. A ) (2.11)
Yn+1 Yn+3 .- V2n-1

The left-hand side of equality (2.11) is a polynomial of ©,z°, % by virtue of
equalities (2.2), (2.9). Then the optimal time © is some root of equation (2.11)
for & = —1 or 4 = +1. Further we explain how to select this root.
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The case of the odd mn. Consider system (2.1) for the odd n (n =
2p +1). Just as in previous case we have

o0
Yok—1 Cok—1
arth R(z —artth 1 2k 1 kgl 2% — 1)k T

where
bn ZZn_Q + bn 4Z7L—4 + ...+ b3z3 + blz

R(z) —
B = T e Tt TP T a

(2.12)

The polynomials ya;_1(2°,0,4) (k = 1,...,n) are defined by formulas (2.8)
or (2.9) as before.
From the equality

bn_QZn_2 + bn_4z"_4 + ...+ b323 + b1z . f: Yok—1 (2 13)
2", 323 4 4 a22 + ag - )
it follows that
§a! Y3 ‘- Tn
V3 Y5 co- Tnt2
AR A ) (2.14)
Yn Yn+2 --- V2n-1

The optimal time © is a root of the equation (2.14) for % = —1 or & = +1.
Note that since the elements 9,1 (kK = 1,...,n) are the polynomials of the

(2k —1)th degree from the optimal time © then in the case of the even n (n = 2p)

2

we have the equation of degree p(2p + 1) = % + g for finding the optimal
2

time ©. And in the case of the odd n we have the equation of degree % + n

as well. The equation for the determination of the optimal time obtained in [5]

has the degree n? both for an even and an odd n. Thus, the introduction of the

hyperbolic area-tangent allows to decrease the degree of the polynomial in the

equation for the optimal time © almost in two times for sufficiently large n since
n? + n
D) 1
2 5 2 —>§f0rn—>oo.
n
Let us show how to select the root of equations (2.11) and (2.14) which is the
optimal time. The following Lemmas 1-3 are used to prove the theorem on the

selection of the optimal time and to describe the 0-controllability set.

P

Plz) has form (2.6) in the case
z

of an even n (n = 2p), n > 2 or form (2.12) in the case of an odd n (n =2p+1),

Lemma 1. Let the rational function R(z) =
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n > 1. Then the roots p1,po, . .., Pn_2 and the poles q1,q2, . . ., qn—1 of the function
R(z) are real and alternate i.e. g1 <p1 < ... <@Gn-2<Ppn-2<Gqn-1-

Proof. Let us prove the lemma for the even n (in the case of the odd n
the proof is the same).
By virtue of equalities (2.4), (2.5), (2.6) we have

P(z) _n_1 _1)itl gp @
6 => (-1) th =% (2.15)

- z
=1

Let us denote Pi(z) = Q(z) + P(z), Q1(z) = Q(z) — P(z). Using the relation

ar th

1
arthz = 2 In . % in the both sides of equality (2.15), we obtain
-z
e PG 1 PG L AT e+ Tur)
Qlz) 2 Qi(z) 2 (z-T)(z+T)...(z—Tmh_1)

and, consequently,

Pi(z) = (z4+T)(z—T2)... (z +Tho1), Qi(2)=(z—T)(z+Tp)...(z—Tph_1).
Let us show that P,(—T},_2) > 0. Really, we have

P (~Tp2)=(-Tpno+T1)(~Tno2—To)...(~Tn-2—Tn2)(~Tn2+Tn1) >0

since the number n is even and T),_o > Ty for k=1,...,n—3 and Th_o < Tp_1.
Arguing by the same way, we obtain the relations

Py(~Tn—1) = 0, P(~Tn—2) > 0, Pi(=Tp_3) =0, Pi(=Tp_4) <
Pi(~Tp-5) =0,...,sign Pi(~T3) = (-1)%, Pi(— ) 0,
sign P (Th) = (-1)3 7Y, P(Ty) =0,..., P (Th_s5) > 0,
P1(n4)—0 Pl(n3)<0 P1(n2)—0 P1( 1) >0,
Qi(=Tu-1) <0, Qu(-Ta2) = 0, Qu(~To3) > 0, Qu(~Tn-4) =
Qi1 (—Tns5) <0,...,Qi(=Ty) =0, signQ(-T) = (—1)%,
Ql(Tl)ZO Sigan(Tz) (12t Qu(Tes) =0,
Q1(Th-4) >0, Qu(T3) =0, Q1(T—2) <0, Q1(Tr1) = 0.

Hence
Q=T 1) = 2(Pl( ~1) + Q1(=Th-1)) <0,

Q(_fn—2) (Pl( n—2) + Q1(—Th—2)) > 0.
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Then the point z =¢; such that Q(g;) =0 will be found in the interval
(=T—1, —Tp_2). Analogously it is shown that in each interval (—T},_3, —Tph_4),

s (T4, Tn—3), (T2, Tn_1) there exists the point of vanishing function Q(z).
There is no other poles besides q1, g9, ..., gn—1 of the rational function R(z) since
the polynomial Q(z) has degree n — 1.

For the function P(z) in each interval (—Ty 2, ~Tn 3), (=Tn 4, —Tn_5), - - -,
(Tn—5,Tn—4), (Tn—3, T_2) there exists the point of vanishing of the function P(z).
Hence the function R(z) has n — 2 real roots, and there is no other points besides
P1, P2,---,Pn—2 such that P(z) = 0.

P
Thus, the rational function R(z) = % has n — 2 roots p1, po,...,Pn—2 and
z
n — 1 poles ¢1, q2,...,qn,_1, and as it is obvious from the above disposition of p;
(¢=1,...,n—2)and g; (j =1,...,n — 1) inside of the corresponding intervals

the roots and the poles of the rational function R(z) alternate. The lemma is
proved.
0 —1—aA}
Remark 1. Forthecaseofn:1wehaV671:Clz#:

and whence the optimal time © is determined. For the case of n = 2 the rational
function R(z) has one pole and no roots. For n = 2 we have 43 = 0 and 7 =
Ci =1, >0.

Remark 2. Evidently the roots and the poles of rational function (2.6)
or (2.12) are situated symmetric with respect to the point z = 0. In the case of
the even n (n = 2m) rational function (2.6) has the roots +p!,+ph,...,xp,
and the poles 0,+¢},+¢,...,+¢,,_;and 0<p| <qi <ph<gh<...<pl,_; <
¢),_1- In the case of the odd n (n = 2m+ 1) rational function (2.12) has the roots
0, £p}, £ph, ..., xpl,_; and the poles +¢i, +gh,...,+q), and 0 < ¢} < p| < ¢) <
Py <. <1 <Py <

Consider the case of the even n (n = 2m). Having multiplied the both sides
of equality (2.10) by z and denoted z? by w, we have

bom—2w™ L 4 bom 4™ 2t bow + by o= Yok—1

, 2.16
w1 4 a9 _3wm™2 4+ ...+ asw + a1 P wk—1 (2.16)
whence we obtain
bom—2w™ ! + bop_aw™ 2 + ... + bow + by N Yokt
tm Wl L ag, 3wm 24 ... 4+ a3w+a; ; wk (2.17)
Having denoted
P(w) = b2m72wm—1 + b2m74wm_2 + ...+ bow + by, (2.18)
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Qw) =w™ ! +agm_3w™ * +... + azw + a1, (2.19)

we rewrite equality (2.17) in the form

P o«
G =2 (2.20)
Qw) i
where P (w) = (14 7)Q(w) — P(w) or
ﬁl (w) = (1 +v1— me_Q)wm_l + (agm_g — bgm_4)wm_2 +...+ (CL3 — bz)w + a1 —by.
(2.21)
The following lemma holds.
Lemma 2. The rational function
Ru(w) = 2, (2.22)
Q(w)
where the polynomials Py (w) and Q(w) are defined by equalities (2.21) and (2.19)
respectively has the real roots P, ph, ..., pl,_1 and the poles i, 2, - . . , Gm—1 which

alternate, i.e., §1 <Py < Go <Ph < ... < Gm-1 <Pl,_1-

~ Proof. By virtue of Remark 2 to Lemma 1 the polynomials P(w) and
Q(w) defined by equalities (2.18) and (2.19) respectively can be written in the form
P(w) = bam—a(w—p1)(w—p2) - - (0—Pm-1); Qw) = (w=G)(W=2) ... (W—Gm-1),
where p; =pl”, ¢i =¢,” (i =1,...,m — 1) and the inequalities

PM<G<p2<@<...<pm 1<Gqn1 (2.23)

hold.
 Let us show that at the interval (G1,G2) there exists the point p} such that
Py (p}) = 0. We have

Pi(q1) = (14m)Q(G1)—P(q1) = —P(G1) = —bam—2(G1—51)(G1—P2) - - - (G1—Pm—1)-

Here boy—o > 0 since from (2.16) we have boy—o = 71 = C; > 0. Taking
into account inequality (2.23) in the case of the even m, we have the inequality
Py(G1) < 0, and in the case of the odd m we obtain the inequality P;(G;) > 0.
Further, we have

Pi(G) = (1471)Q(G2)—P(G2) = —P(G2) = —bom—2(Ga—p1)(G2—P2) - - - (G2—Pm—1)-

By virtue of inequality (2.23) in the case of the even m the inequality Pi(G) >0
holds, and in the case of the odd m we have the inequality P;(G2) < 0. Thus, in
the interval (g1, o) there exists the point w = p} such that P;(p}) = 0.
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Analogously it is shown that in each interval (G;, ¢i+1) (1 = 2,...,m —2) there
exists the point p} (i = 2,...,m — 2) such that ﬁl(ﬁg) =0(=2,...,m—2).
Let us show that there exists the point w = gl | (Bl,_1 € (Gm-1,+00))
such that Py(¢!, ;) = 0. Since lim P(w) > 0, lim Q(w) > 0, the leading
w—r+00 w—r+00

coefficient of the polynomial P(w) is equal to bom—2 = 71 and the leading co-
efficient of the polynomial (1 + 71)Q(w) is equal to 1 + 71 then in the interval
(Gm—1,+00) there exists the point p,_; such that P(p), ;) = (1 +7)Q(#,,_1),

hence P, (5!, ;) = 0.

Thus, the polynomial P;(w) has m — 1 real roots §, b, . ..,p, 1, moreover,
G <Py <G <ph<...<dgm1<pl,_q,1e the roots and the poles of the
. Py (w
rational function R;(w) = ~1( ) alternate. The lemma is proved.
w

Consider the case of n = 2m + 1. Having divided the both sides of equal-
ity (2.13) by z and denoted 2% by w, we have

b2m_1wm71 + bgm_gwm72 4+ ...+ bsw+ by . i Yok—1
WM 4+ agm_ow™ L+ ...+ asw + ag P wk

whence we obtain

w™ + agm,gwm_l + ...+ aw + ag — (b2m71wm—1 + b2m73wm_2 + ...+ bsw+ bl)

W™+ Qom_ow™ 1 + ... 4+ asw + ag

o0

_ Y2k—1

=1- E o (2.24)
k=1

Having denoted

ﬁ(w) = b2m71wm71 + b2m73wm72 4+ ...+ bsw + by,

Qw) =w™+ aom—ow™ 1 4 ... 4 agw + ay, (2.25)
we rewrite equality (2.24) in the form
Pi(w) o~ V261
LA : (2.26)
G T

where P (w) = Q(w) — P(w), or
ﬁl (w) =wm+ (an_g — b2m_1)wm—1 4+ ...+ (ag — b3)w + ag — b1. (2.27)

The following lemma is proved by analogy with Lemma 2.
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Lemma 3. The rational function

Ri(w) = ==, (2.28)

Q(w)
where the polynomials P1(w) and Q(w) are defined by equalities (2.27) and (2.25)
respectively has the real roots P}, Py,...,D,, and the poles Gy, Go,- - -, Gy which

alternate, i.e., G <Py < o <P < ... < Gy, < Dy

Let us denote

173 3 Y
Ar=m, A= A5:‘33 35 ’ :‘15 17 Y
V3 Y5 cee o V2pt1
A4p,1: Y5 Y7 -+ V2p+3 ’

Yep+1 V2p+3  --- Vip-1
§a! 3 -e Y2pti

A4p+1: 73 Y5 Y2p+3 e
Tt Toprs - Vi

Since the roots and the poles of rational functions (2.22) and (2.28) having the
expansions into series (2.20) and (2.26) respectively alternate then the conditions
of Lemma 3 from [5] hold. Then the following corollary is valid.

Corollary 1. The matrices (’yg,-+2j_1)%2:1 and (72i+2j_3)z('3'111)/2 (in the case
of even and odd n respectively) are positive semidefinite and, moreover, Aoy, 1 =0
and Agg_1 >0 fork=1,...,n—1.

Let us denote the polynomials yo; 1 by agr 1 (K = 1,...,n) in the case of
the control of the first kind and by fox—1 (K =1,...,n) in the case of the control
of the second kind. Then we have the recurrence formulas (2.8) for determining
the polynomials o1 and fBog_1. Let us set yor_1 = agg—1 (kK =1,...,n) and
denote by A; , the determinants

a3z as oo QOpt aq (6% “e (67}
as (0%4 oo QOp43 [0 %] as oo Opg2
bl
Op+1 Opy3 ... Q2p—1 Op Opy2 --. Q2p—1
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in the case of even and odd n respectively. If we take Bor 1 (kK =1,...,n) instead
of yop—1 (k=1,...,n), then we denote by A, , the determinants
Bz B5 .- Bat1 Br Bz ... PBn
Bs  Br ... Pnis Bz Bs - Bnto
Bn+1 Ba+s .- Pon-1 Brn Bni2 --- Bon—1

in the case of even and odd n respectively. Finally we get the following theorem.

Theorem 1. The optimal time © is a mazimal real oot of the equation
Agn—l(é’xo) A;n—1(éa$0) =0.
Moreover, zf(:) is a mazximal real root of equation
A, 1(0,2%) =0, (2.29)
then the optimal control is of the first kind, if © is a mazimal real root of equation
Af (0,29 =0, (2.30)

then the optimal control is of the second kind.
. . 1. ~
For problem (1.2) the optimal time is © = DY In®.

3. The 0-controllability set of the system

The problem of description of the 0-controllability set of the system is closely
connected with the time-optimal problem. Let us denote the 0-controllability set
of system (1.2) by S(0,©). The following theorem gives the analytical description
of the 0-controllability set S(0,©).

Theorem 2. The set S(0,0) has a form
5(0,0) = {0 : Az_k_l((:),mo) >0, A;’k_l((:),wo) >0(k=1,...,n)},
2O

where © = e~

The proof is based on Theorem 1 and Corollary 1.

Example Forn = 2 the 0-controllability set of system (1.2) at the
time © is written by means of the following system of the inequalities

S(07 6) = {-’EO : al(éaxo) > Oa /81((:),3:0) > 07 a3(é’$0) > 0; /83((:)’3:0) > O}a
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where © = ¢ *©. Since

alzé((:)—l-l—i-/\x(l)), 51:%((:)-1-1—/\:5(1)),

s = i (3(1)3 —30%(1+A2?) =30 (1+A29)” — 1+ Az0)’ +4 (1 + 3/\w3)) :
o = 5y (36° =307 (1 xaf) — 38 (1 xat)” — (1 —2al)’ +4 (1 - 3xa8) )

then the 0-controllability set has the form

2§ < 522 (29 + A (6+1) (x?)2+%((:)+1>2w(1)—ﬁ (6+1) ((5)—1)2,

xg > %)\2 (56(1))3 —

W=

~ - 2 - . 2
)\<®+1> (x?)2+§(®+1) 29+ (®+1) (@—1) :
where © = ¢ 1©,

For example, for A = —1 we obtain the following system of the inequalities
describing the 0-controllability set at the time © =In3.

1
9 < 2 (:v(l))s — ($(1))2 + 429 + 4,
1
0
>
2219
This set is represented on figure.

(@)° + (@) + 40 — 4.

Figure.
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4. The equations for the switchings

Having found the optimal time © and the kind of control it is necessary to
find the switchings T1,T2, .. Tn 1-

Theorem 3. The switchings Tl, fg, ... ,fn_l are the positive roots of the equa-
tion
0Aop_1(m Yon—1) —
Zt2l QZ = 5 P Y2+ D Yeme1Y2k—21-2mr1 | =0, (41)
=1 Y2k—1 el
with Yoi—1 = Yoi_1(2°,0,4),i = 1,...,n. Here z° is an initial point, © is an

optimal time from z° to 0, @ is a control at the last interval [Tn_l, (:)] Here and
further we set 4% = —1 in the case of k =1 and v*; = 0 in the case of k > 1.

For the proof of the theorem the following auxiliary result is used.

Lemma 4. The following equalities hold:

Ovpe—1 _ 1 )
0C9_1 2k—1’ .
k—j
Ovak—1 1 .
= — — —27— 9 :1’...,]{)—1_ 43
802j_1 25 —1 mz_lf)?m 17Y2k—25—2m+1 7 ( )

For the proof of equalities (4.2) relations (2.8) are used. Equalities (4.3) are
proved with the aid of formulas (2.9).

Remark. Write relations (4.2) and (4.3) in the form

k=1
Y2k 1 )
T - 21— l=1,... k. 4.4
9C11 20 -1 7=t 27% 1Y2k—21-2m+1 | 5 yeens (4.4)

m=1

Proof of the theorem. Write equations (2.29) and (2.30) in the
form

A2n—1(71 ('/I"Oa éaﬂ)a e 772”4—1(‘770’ éa ﬂ)) = O’ (45)

i.e., for & = —1 we have equation (2.29), for & = +1 we have equation (2.30).
For © = O(z°) and @ = @(x®) equation (4.5) becomes identity. Since

Agp—1 = Aop_1(71,- - Yon—1),
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Y2k—1 :72k71(017--'7c2k71)1 k=1,...,n,
Co—1 = Coy1 (T4, ..., Tp—1), l=1,...,n,
then we obtain that

AQn—l = AQn—l(Th . ,Tn—l) =0.

Having differentiated this identity by T (j = 1,...,n — 1), we obtain the system

ORan-1 =0, j=1,...,n—1,
o1}
or
ZaAzn 1 Oy2k—1 0C1 ZaAZn 1 Oy2k—1 0C3
Ovak—1  O0C1 9Ty Ovor—1  0Cs 9Ty
0Ag9y—1 a’)’2n—1 9Com—1 _
Ovon—1 0Con_1 8Ty ’
(4.6)
ZBAM 1 Oyop—1 0C1 ZaAzn 1 Oyop—1 0C3
Ovyok—1 O0C1 8T, Oyok—1 0Cs 9T,
0Ag, 1 3’)’2%1 9Com 1 _
0van—1 0Con—1 8Ty,
n—1 i -
Since system (2.1) has the form Co_1 = (=1)" 3 (=17 TH*1, (k=1,...,n),
j=1
then 50
%=1 _ ( \ntitlior _ 1yp2k—2
G = (I k- T (4.7)

Substituting equality (4.7) into system (4.6), we obtain

0A 0 0A 0

n+2 2n—1 O0Y2k—1 2n—1 O07V2k—1
~|—3T

( Oyok—1  0C1 Z Ovok—1 0C3

009, 1 OYok—1 ~on—2000n_1 Ovan—1
+5T +...4+2n - 1T =0,
! Z Oy2k—1 0Cs ( ) 0von—1 0Con1
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n n
0Aop—1 Oyok—1 ~o 0Aop_1 072k—1
—1)%" + 372
(=1) (k:l Ovor—1  0Cy " lkz_2 Ovor—1  0C3

~ "\ 0Agn—1 Yok 1 ~om—20Qon_1 0Y2n—1
574 cei+ 2n— 1T =0
% +Z Oy2k—1 0Cs et = DT 0Yon—1 0Con—1 ’

whence it follows that the switchings Ty, Ts,...,Tp—1 and only they are the
positive roots of the equation

n n
0Aop_1 Oyap— 0Aop_1 Oyap—
2n—1 072k 1+3t22 2n—1 OV2k-1 |

k=2

po Ovor—1  0Ch Oyok—1 0C3

$2n—2 0Aon_1 OYon—1

+(2n — 1 _0,
( : ) 87271—1 BCQn_l
or
; - % 0Agn—1 Oyop—1
21 — 1)¢*2 =0. 4.8
l:zl( ) ; 8’)’2k71 0Cy 1 ( )

For the given initial point 2%, @ = ©(z°) and @ = (z°) the left-hand side
of equation (4.8) is the polynomial of degree 2] — 2 where all powers are even.
Hence renaming ¢2 by 7 we obtain the polynomial of the degree n — 1 which has
n — 1 real roots. Then returning to the variable ¢, we have that the polynomial
in equation (4.8) has n — 1 real positive roots Ty, Ta,y .., Tp_y.

Substituting relation (4.4) into equation (4.8), we have equation (4.1) as to
be proved.

Let us find the derivatives %i%l . Denoting the determinant obtained from

2%—1
Agp—1 by crossing out the ith row and the jth column by Agﬁi )1, we have for the
odd n(n=2p+1)

Ao o
88 2n—1 _ (_1)k+1 Z Ag;’bi)l’ k=1,...,n,
V2k—1 itj=k+1

1<4,j<p

and for the even n (n = 2p)

8A _ ..
e = ) LN SN CEUN TS
0vok—1 ik

1<éj<p
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Substituting the obtained expressions to equality (~4.8)~ and using relations (44),
we obtain the equations for finding all switchings 17, T5,...,T,_1 forn =2p+1

n

n k—1
Z t2=2 z:(—l)’chl (731 + Z 72m—1’72k—2l—2m+1> Z Ag’,li)l =0,
k=l

=1 m=1 itj=k+1
1<4,5<p
(4.9)
and for n = 2p
n n k—1 o
Zth—Z Z(—l)k (’)’31 + Z ’)’2m1’)’2k—2l—2m+1) Z Agn’i)l = 0.
=1 k=l m=1 i+ji=k
1<4,5<p

The theorem is proved.

Returning to the initial time-optimal problem (1.2), we obtain

1. -
T, =——InT; 1=1,...,n—1.
A
Example Let us consider the time-optimal problem for system (1.2) for
n = 3, i.e., for the system

T1=Ax1+u, Zo=3 ro+u, =3=>5Ir3+u

from the initial point (29, z3, z3) to 0.
In this case the system of the equations (2.1) has the form
—Tl + Tg = (C,
—Tl?’ + Tg’ = (4,
TP+ 15 = Cs,
where

01:(:)—12—11/\:6(1)’ 03:(:)3—12—311/\568’ Cs —

0% — 1 — 5z
5 :

Then we have ]

71=§((3)—1—mm?),
V3 = i4 [3é3+3(1+a>\x9) 6% -3 (1+art?)’ 6

+ (14 @aad) - 4 (1+ 3axaf)|
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1

3 o ~ N
= 50 |150° +15 (L @) 6 10 (1 4+ 3urag — (1 +ixaf)”) 67

Y5
+5 ((1+@rad)" =4 1+ arad) (1+3araB) ) ©
+10 (14 @xad)” (14 3rad) — 24 (14 5aral) — (1+@rad)’] .
Equation (2.14) for finding the optimal time © for n = 3 has the form

Y13
Y3 Vs

whence

4506 — 90 (1 + aAz?) ©° — 45 (1 + arz?)” &*
+180 (1 + 3aAz9) O3 + (15 (1+arzf)" — 60 (1+ 312/\.753)) Ch
+ (60 (1+axsd)” (1+3ara9) — 6 (1 + axa?)” — 144 (14 5aA3) ) ©
+ (1+@A2?)® — 20 (1 + @Aa?)” (1 + 3@Aa))
+144 (1 4 axa?) (1+ 5arzd) — 80 (1+ 3arad)” = 0.

The optimal time © is a maximal real root of this equation.
Equation (4.9) for the determination of the switchings 71, 7o will be written
in the form

Yitt — (73 + 273)t2 + 75 = 0,

where the functions 7y9;—1 (i = 1,2,3) depend on the optimal time 6 and the
coordinates of the initial point (z¥, 29, 23). Then we find the switchings T, Tb
from the last equation:

7 = \/’Yi3 + 273 — /(13 +273)2 — 4175
2’)’1 ’

Ty = \/7% + 273 + V(0 +273)? — 4717
21 .

Returning to the initial time-optimal problem we have

1. - 1. . 1. -
@Z—XIDQ, le_xlnTla TQ:_XIHTQ'
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So for the initial point (0, 2, 114) and A = —2 we have the equations for the
optimal time © determination

0% - 20° — 6% 4+ 5203 — 170% — 36340 + 3345 = 0,

65 — 205 — ©* — 44603 + 1502 + 36300 — 3855 = 0

in the case of the control of the first and the second kind respectively. Whence
we find that the maximal real root © = 5 and @ = —1.

Define the switchings 71, T as the roots of a polynomial. For the found ©
and 4 we have y; = 2,73 = 16,5 = 128. Then we obtain the equation to
determine the switchings

t+ — 20t* + 64 = 0.

From the last equation we find T, = 2, Ty = 4.
Finally, we obtain

1 1 1
0= 2 In5 = 0.805, T = 2 In2~0.347, 15 = 2 In4 =~ 0.693.
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