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We show the role which plays a recent theorem on the strong asymp-
totic stability in the analysis of the strong stabilizability problem in Hilbert
spaces. We consider a control system with skew-adjoint operator and one-
dimensional control. We examine in details the property for a linear feed-
back control to stabilize such a system. A robustness analysis of stabilizing
controls is also given.

Dedicated to the memory of V.Ya. Shirman

0. Introduction
The initial point of our work is the assertion:

Theorem 0.1. Let A be the generator of a Cy-semigroup {eAt}tZO on a Ba-
nach space X and

i) the set o(A) N (iR) is at most countable,

i) the adjoint operator A* has no pure imaginary eigenvalues.
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Then the semigroup {eAt}tZO is strongly asymptotically stable if and only if it
1s uniformly bounded.

This fact was first proved by Sklyar and Shirman in 1982 [1] for the case of
bounded operator A. The method of treating of this problem given in [1| was
picked up by Lyubich and Vu Phong [2] who extended in 1988 the result to the
general case. Independently, in 1988 Theorem 0.1 was obtained by Arendt and
Batty [3] who used some different approach.

In the present work we will use the following equivalent formulation (see [1])
of this theorem

Theorem 0.2. If A is as in Theorem 0.1, the strong asymptotic stability
of {eAt}tzo occurs if and only if there is a norm || - ||1 equivalent to the initial
norm || - || of X such that A is dissipative in || - ||1, i.e. (see [4]) for any z € X :
lle**z]|y < z]l, t > 0.

In particular, Theorem 0.2 suggests that, even in the case when X = H
is a Hilbert space, the study of the strong stability of semigroups in terms of
dissipativity of their generators may require taking into account equivalent but
non-Hilbert norms in X.

One of the most natural areas for application of the mentioned above results
is the problem of strong stabilizability of contractive systems.

We consider a system

& = Az + Bu, (0.1)

where A generates a contractive semigroup {e’};>¢ in a Hilbert space H; B is
a bounded operator from a Hilbert space U to H. One needs to find a feedback
control w = Pz, P € [H,U] such that the closed-loop system & = (A + BP)z is
strongly asymptotically stable.

This problem has been studied in [5-13], see also the bibliography in [14, 15].
Majority of these works uses stability property of the semigroup generated by
A — BB*. In particular, it is known [13] that if

i) 0(A) N (¢R) is at most countable,

ii) there is no eigenvector v of A corresponding to a pure imaginary eigenvalue
and such that B*v =0,

then the system (0.1) is strong stabilizable and a solution of this problem is
given by u = —B*z.

This fact is a consequence of Theorem 0.1. However, the problem becomes
much more complicated if one needs to determine some other strong stabilizing
controls or, especially, to describe the set of such controls.

This question appears to be insufficiently explored (one can mention only the
works [8-11], where a Riccati equation approach was used) but, at the same time,
important, for example, when examining robustness of stabilizing controls.
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We suggest Theorem 0.2 as a tool for determination of stabilizing controls.
The present work contains an analysis of this problem in a case which is often
met with in applications. We consider equation (0.1) under the assumptions:

i) A is a skew-adjoint unbounded operator with discrete spectrum consisting
of simple eigenvalues {A;}72,

ii) there exists a constant C, = %rgéljn |Ai — Aj| >0,

iii) the space U is one dimensional, so we associate B with a vector b € H;
besides, if {¢,, }2° ; is an orthonormal eigenbasis A¢y, = A, ¢y, then by, = (b, ¢p) #
0,n€eN.

Our goal is to examine for feedback control u = (z,q), ¢ € H the property to
be stabilizing.

In Section 1 we show that operator A + bg* preserves the Riesz basis property
of its eigenelements if ||b|| - ||¢|| < C»/2 (Theorem 1). This fact, in particular,
implies (compare Theorem 0.2) that for the strong stability of the semigroup
{elA+ba)tY, 5 occurs if and only if there exists an equivalent Hilbert norm in
which the operator A + bg* is dissipative. A complete description of all such
norms is obtained in Section 2 (Theorem 4). The final result of Sections 1, 2 is
a development of Theorem (.2 to the case of semigroup {e(A+bq*)t}t20. In Section 3
we give a robustness analysis for a stabilizing control u = ¢*z. Note that the
results of this section essentially generalize the robustness analysis given in [16]
for the control w = —b*z. Finally, in Section 4 we obtain conditions under which a
feedback control is stabilizing. These results rest on the application of the Rouché
theorem as well as of the Routh-Hurwitz method [17].

The results of this paper were announced in [18].

1. Basis and spectral properties of A + bg*

Theorem 1. Let ||b]| - ||g|| < Cys/2, where C, = 3 min|)\; — A;| > 0. Then the
eigenvectors Yy, of the operator A = A + bg* constitute a Riesz basis in H.

Proof. Letus consider the equation for the eigenvectors 1y: (A — XkI +
bg* )1, = 0 and apply the resolvent ka(A). We get ¥, = ay, - ka (A)b, where
an = —(¥n,q). It gives

1+ (ka(A)b, q) =0.

This together with the property |\, — Xk| > Cy, (for all n # k) and the implicit
form of the resolvent Ry (A)b = Y ore 1 bkdr/(Ak — Ap) lead to

<ba ¢n><(é:fL1Q> - _1_ Z <b7 ¢k><¢:{€aQ>

(1.1)
/\n - )\n k#n >\k: - An

Now we need the following
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Lemma 1. Let ||b]| - ||g|| < C,/2. Then the following equation
1+ (Ra(A)b,g) = 0 (12)

has a unique root in each Ting
2
Ko={rec : 2odasl <h- Ml <AGss . (13

Proof of Lemma 1. Let us rewrite the equation (see also (1.1)) in
the form g(A) = g7(A) + g5¥(A\) = 0, where

n k#n

Since for any A € K, we have |g2(\)| < |b]|||¢||C;! < 1/2, then on the boundary
0K, of the ring K, one has

(b, dn) (P, 9)

I e e B R LR R R 1o
n

for (A — An| = 2|(b, n)(q, ¢n)| and

(b, én){($n, 9)

n > _
)] > 1 - | el

‘ —1-1/2=1/2> |gf (V)|

for |[A— An| = 2[(b, ¢n)(q, $n)|- Now we apply Rouché theorem to deduce that the
function g(A) has the same number of roots as g7’ (), namely the only one root
in K. The proof of Lemma 1 is complete.

From (1.1) and the assumptions on ||b] and ||g|| we easily get [An — An| <
2|{b, ¢ ){bn,q)| (c.f. the definition of K,). Consider

M= Ay o= b Ao — A = by
S ¢y = 3 — by 1.
fn bn /\k Y ¢Ic ¢n + bn /\k Y ¢l<: ( 5)
k=1 n k#n n

It is evidently that f, = 1, - ¢, with a constant ¢,. We have then

2
I o

An — A b -
I o= fa IP< | 752230 5 | <dlaal’C2 07
n k#n k— \n

So we get 3% || ¢ — fu IP< 4C;2 || b ||| ¢ ||* . The assumptions on ||b]| and
lg|| imply

Z H ¢n - fn ||2< L.
n=1
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The last estimate means that the sequences ¢, and f,, are quadratically close.
Taking into account Lemma 1 it remains to apply [19, Theorem V.2.20] that
completes the proof of Theorem 1.

Remark 1. One can notice that under the condition ||b||-||q|| < C»/2 we have
proved that

Z |An _Xn| < 22 1(b, dn) (P> )| < 2[0]||lg]| < 2C5/2 = C

n=1 n=1

So the strengthening of this assumptions by ||b|| - ||q|| < Cy/4 yields
> A =Xl <Cs/2, mEN. (1.6)

In turns that implies
i X1 > D+ N = = Xl = = g1 = [+ ] = = ] = X =
>2C, —Cy/2 - C,/2=0C,, 1#73, 1,5 € N. (1.7)

Theorem 2. Let {Xn}gozl be any set of complex numbers such that:
i) [An — A |<C(,, n € N;
An—An|? Cqy
if) 302 A5 < i
where Co,by, = (b, ¢) and A, are as in Theorem 1. Then there erists a umque
control uw(z) = q*z such that the spectrum o(A) of the operator _ A= A+ bg*

{)\n}n 1 and, moreover, the corresponding eigenvectors A1/)n = )\nwn, constztute
a Riesz basis.

Proof. Consider the vectors f, defined by (1.5). From i) we get

2
00 2

A — An b —
||¢n_fn||2§ b Z k~ ¢k S -

C2 b
R

Hence ii) brings >°0°, || ¢n — fn [|I?< 1 and then {f,}%°, is a Riesz basis by [19,
Theorem V.2.20]. That gives that the equations (fy,q) = c,, n € N have a unique
solution g € H iff 3, |eu|? < oc. In our case, since Y oo ; [ Ay —An|?-|bn| 72 < o0,
then the infinite system of equations
An — A
(fa) =202
n
has a unique solution g € H. Then (ka(A)b, g) = —1, n € N. Since, in addition,
{fn}5%, is a Riesz basis, then the proof is complete.

, neN
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2. Strong stability of a closed-loop system

Theorem 3. Let the system & = (A + bg*)x be strongly asymptotically stable
and ||b]| - ||lgll < C,/2. Then there exists a Hilbert norm || - ||p = (F-,-Y/? with
positive definite F such that the operator A + bg* is dissipative in this norm.
Moreover, if (F-,-)'/2 is such a norm, then
a) for any solution z(t) of & = (A+ bg*)z = Az one has

Lo = SAPa(),2(0) = ~(Wia(r),a(0),

where Wy is a nonnegative compact operator: Wi = Y .20, piwiw;, {w;}2, is
an orthonormal basis of eigenvectors corresponding to eigenvalues pu; > 0,5 € N,
such that
(Z) Zilﬂi<00> o _
(i) 3C1, Cy > 0 such that for any normed eigenelement 1; of A, Ap; = A\,
1 € N, the following estimate holds:

| < ZMk' wk,wz
1 |Re X

b) the operator F' can be found as

k=1

o0 o
F:/Zuke tw wkeAtdt, (2.1)
0

where the integral is convergent in the weak sense:

T
St ~ ~
<F‘T y) = lim Z,u'k<eAt$awk><wkaeAty> dt7 T,y € H.
k=1

T—)oo

Proof. Let usproveitem a). By Theorem 1 we have that the eigenvectors
¥y, of the operator A = A + bg* constitute a Riesz basis. Hence, there exists [20]
a bounded invertible operator F; which maps the basis 1 into an orthonormal
basis, i.e., (F11;, F11g) = ;5. It is easy to deduce from the stability of the system
that the norm (Fz(t),z(t)) is not increasing for any solution z(t) of the equation
& = Az, where F' = F}'F; > 0. So we have d/dt(Fz(t),z(t)) < 0. More precisely,

d
%(Fw,x) = ((FA+ Fbq* — AF + ¢b*F)z,z) = —(Wiz, z),
here we denote W1 = —FA — Fbq* + AF — gb*F > 0.
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Let us prove that Wy is compact. By the definition of operator W; we have
W = AF — FA = Wy + Fbg* + gb*F. Since Fbq* + ¢b*F is a self-adjoint two-
dimensional operator and W7 > 0, we can rewrite W in the form W = W, —
A_z_zx* where Wy > 0 and z_ is the eigenvector of Fbg* + ¢b*F corresponding
to the negative eigenvalue —A_ < 0. We note that for any eigenvector ¢; of A

one has ((FA — AF)¢;, $;) = 0. Hence <W¢ia¢i> <W2§bza¢z> A (z—, pi)]?
= 0, and we can write (Wad;, ¢s) = A_|{z_, $:)|* = o a, > 0. Further we use

the nonnegativeness of Wy to define W21 /2 and get ||W2 <;5Z|| = qa; > 0. Since

{¢i}22, is an orthonormal basis in H we have {q;}3°, € £2. Using this property
1/2

of the operator W,’" and the standard proof of the complete boundedness of
"Hilbert cube" (see, e.g., [21]), we get that W21/2 is a compact operator. Hence,

Wy = Wl/ 2W21 /2 is also compact together with Wi which is a finite-dimensional
perturbation of Wj.

Since W is compact and nonnegative definite it can be represented as W =
Y peq pkwiwy. This yields for the eigenelements 1; of A :

(FA+ AF)pi, i) = (F i ) + (Fpi, Aiahi)

o {wre» i) 2.

hE

= 2ReXi (Fipi, i) = — (Wi, o) = —

B
Il

1

Then taking into account the existence of such constants C1,C2 > 0 that Cy /2 <
(Fii, ;) < Cy/2, i € N, and since Re A\; = —|Re \;| we obtain property (ii). To
prove (i) one can observe

ZMk—ZHkZ|wk,¢z ZZ | (wh i) |
=1 k=1

) )
SCQZ|ReXi| SCQZDV\Z'—)\” < (Cy-Cy < 0.
=1 =1

Remark 2. The property (i) together with p; > 0 mean that W1 is a kernal
operator (for the definition and properties see, e.g., [20]).

Let us prove item b). First note that since Re X, < 0,17 € N, then the operator
F given by (b.3) is convergent in the weak sense. Next observe that this operator
satisfies o
(FA+ A"F)z,y) = —=(Whz,y),  z,y€ H. (2.2)
It remains to prove that F' is the unique operator satisfying (2.2). Conversely, if
F} is another solution of (2.2), then (((F — F})A+ A*(F — F}))z,y) =0, z,y € H.
For x = 1, y = 4, i,j € N, this yields (((F — F1)¥;, ;) = 0, i,j € N, that
immediately implies F' = Fj. The proof of Theorem 3 is complete.
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Theorem 4. Let the system & = (A + bg*)x be strongly asymptotically stable
and [|b]] - ||g|| < Cy/4. Let W1 be any nonnegative compact operator satisfying
properties (i), (i) from Theorem 3 and F be defined by (2.1).

Then F is positive definite and bounded and, therefore, || - ||p = (F-,-)}/? is
an equivalent norm in which A=A+ bg* is dissipative.

Proof. Let {4}, be the biorthogonal normed basis to the Riesz basis
{n 52, of normed elgenvectors of A, Aty = Atp, n € N (see Theorem 1).
Then for the operator F' given by (2. 1) we obtain

<F$a$>:ZNk/<Z <'7" ’(/)z ¢z>wk wkazejtl"(/)] ’(p]
0

k=1 i=1 j=1
> 1
= Z .y — (z,9;) (b}, x Zuk Vi, wi) (Wi, ¥5)
1,j=1
2 3 ; 2
_Z2|R 5 (@, P> il (i, )|

k=1

\/\Re)\ \/|Re/\ (@, i) (), ) i i) p ).
i» Wk ) \Wk,
zlj;éjl by +)\ \/| ReXi] \/|Re)\ k=1 ’

This yields the estimate

o

1
|<Fw,w>—§zyflﬁ
=1
i VIReXil\/|ReXj| [(z, 9})| (4], x)] i (e Zu|¢ "
— — — — (3] k k yE k)
ij=1 |Ai £ A1 y/|ReXi|\/|Re)]|
i#]

i \/ | ReXi|\/ | ReX;| 2.9

YiYj,
i,j=1 |>\ +)\ |

i#£]
where s = (2, )] (VIRA]) /Sl
Taking into account property (ii) of the operator Wi and the basis property
of {1}, we get

Cillell* < llyll” = Zyz < Cyll=lf?, €1, Cy>0. (2.4)
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On the other hand, (1.6) and (1.7) imply

ij=1 |Ai + )\j| i,j=1

i#]
o0 = 2 o0 .
(Z V IRe/\'\yi> <c,! (ZIReM> lyl[?
=1 =1

=Gy 1( \/\z—f\l> lyl1? = Iyl (2.5)

where v < 1/2. Finally, from (2.3 ) we conclude
1 1 1
(5 = Mllall* < (2 Nyll* < (Fz,2) < (5 +Dlyll* < G+l

which yields boundedness and positive definiteness of F. From (2.2) for any solu-
tion z(t) of £ = (A + bg*)z we get the inequality

d

g Fe(t),2(t) = (PA+ A*F)z(t),2(t)) = —(Wia(t), 2(t)) < 0.

Thus the norm || - || = (F-,-)/2 brings the dissipativity for A. The proof is
complete.

Summarizing Theorems 1, 3, 4, we obtain the following development of The-
orem (.1 in the examined case:

Theorem 5. Let ||b||-||q]| < Cy/2. Then the following assertions are equivalent:

i) the equation & = (A + bg* )m 1s strongly asymptotically stable;

ii) all the eigenvalues A, of A = A+ bg* are of negative real part: Re)\ <0,
n € N; B

iii) operator A is dissipative in some Hilbert norm and has no pure imaginary
eigenvalues.

Under the assumption ||b||-||q|| < Cy/4 the set of norms from iii) is completely
described by Theorem 4.

Proof i) — ii) is obvious if we take into account Theorem 1.

ii) — iii). Let Re A, < 0, n € N. Since eigenelements {1, }52; of A constitute
a Riesz basis (Theorem 1) then the operator Fi given by Fi1, = ¢p, n € N, where
{¢n}>2, is an orthonormal basis in H, is bounded and invertible. Therefore, if
z(t) is a solution of & = Az, £(0) = z° then

(F{ Fiz(t) Zeme”l O, i)
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is a decreasing function of t. Thus A is dissipative in_the norm || - [|r = (F", N1/2

F = F}F, and, as a consequence, the equation £ = Az is strongly asymptotically
stable by Theorem 0.2.
iii) — i) follows immediately from Theorem 0.2. That completes the proof.

3. Robustness of a stabilizing control

Consider an asymptotically stable system & = (A + bg*)z and a Hilbert norm
(F., Y1/ from Theorem 3. With a feedback control u(z) = ¢*z + p*z, i.e. u(z) =
(z,q + p) the system & = Az + bu takes the following form:

z(t) = (A+bg" + bp™)x = (Z—F bp*)z, b,q,pEe H, t>0. (3.1)

Consider an arbitrary finite or infinite orthonormal system {w;}}¥; C H and
{Nz'}fL C 41; u; > 0, N < oco. Define a compact operator Wy = Zf\il piwiw; > 0.
For any positive ¢ and stable operator A=A+ bq* we can consider Lyapunov
equation with the right hand side —Wj:

F[D+ (1 —68)I]A+ A*F[D+ (1—68)I]=—W,. (3.2)

and its unique operator solution F[D + (1 — )] > 0. This means that for any
z € H one has
(F(D + Dz, z) > §(Fz,z) > C1||z|* (3.3)

We denote by AL and z4 the eigenvalues and eigenvectors of the two-dimen-
sional self-adjoint operator Ry = F(I 4+ D)bp* + pb*F(I + D). They are given by
Ar = (F(I+D)b,p)+ [|[F(I+D)b|l-|pl, A+ 20, A <0,

2t = F(I + D)blpll + pl[F(I + Db, (24,2-)=0. (3-4)

Theorem 6. Let the system & = (A + bg*)x be strongly asymptotically stable
and [|b]] - ||g|| < C,/2. Then for any vector p for which there ezist a finite or

infinite orthonormal system {wi}i]i(f) C H and {,uz-};i(f) C 41; pi > 0 such that
p, F(I + D)b € Span{wi}X?  and Ay |(zy,wi)| < pallzi|l, i=1,...,N(p),

the system & = Az + bu is asymptotically stabilizable with the aid of the control
u(xz) = (z,q + p). Here the vector x 1is defined by (3.4).

Remark 3. Let us note that under the conditions of Theorem 6 on vectors
b,q and p we in fact show (c.f. Theorem 3)~, that for any solution of the system
d/dt(Fx(t),z(t)) = —(Wx(t), z(t)), where W is a nonnegative kernal operator.
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Proof of Theorem 6. Our goal is to find a new norm || - || which
satisfies || - |1 > C|| - || and ||z (¢)|]x < ||z(0)]]1, t > 0 for all solutions of (3.1). We
wish the new norm to be a perturbation of the stable one: ||z||? = (F(D+1I)z,z),
with a bounded self-adjoint operator D (see (3.2)). An easy calculation shows
that on a solution of (3.1) one has

d

a“w(t)“% = (F(D+1)A+A*F(D+1)+F(D+1)bp*+pb*F(D+1))z,z). (3.5)

Using the definition of the operator Ry, we deduce from (3.5) for any positive &
that

%nx(t)n% = ((FID+ (1-0)I|A+ A*F[D + (1 - 8)I |+ 6(FA+ A*F) + Ry)z, z).

(3.6)

Consider the compact nonnegative operator Wy = sz-vz(f ) piwiw; > 0, con-

structed by {wi}fi(f ), {,ui}f-i(f ) and Lyapunov equation (3.2) with the right hand

side —Wjs. Theorem 3 implies FA + A*F = —W; > 0. Now, using (3.2) and the
definitions of operators —Wj and R, we get from (3.6)

d

Zlz @I = (~Ws = 5- W1 + Rlz, z). (3.7)

It is easy to see that the condition Ai|[(z4,w;)| < wpillz+]], ¢ = 1,...,N(p), is
sufficient for the right hand side of (3.7) to be nonpositive.

To apply Theorem 0.1 it is sufficient to prove that A + bg* + bp* has no
imaginary eigenvalues. Assume the opposite i.e., let there exists A € iR such
that (A + bg* + bp*)Z = Az. It is easy to deduce from (3.7) that ((—Ws — ¢ -
Wi + Ro)z,2) = 0. If p, F(I + D)b € Span{wi}fi(f) then % is orthogonal to
Span{wi}gf ). Hence (z,p) = 0 which implies (A + bg*)Z = AZ. This contradicts
the asymptotic stability of A 4+ bg* since A is a pure imaginary eigenvalue.

It completes the proof of Theorem 6.

We can find conditions which guarantee the equivalence of the norms || - ||1
and || - ||. For fixed vectors b and g we consider the normal basis of eigenfunctions
{1}, and the sequence of eigenvalues {);}32, of the operator A= A+bg (see
Theorem 1) and define the set

WE{’U)EH:M<C for some a >1,C >0;1=1,2,...}. (3.8)

Re X;| ~ &

Remark 4. The condition w € W means that the coefficients (w, ;) decay in
some sense more quickly than the coefficients (b, $;), asi — oo (see Theorem 1).
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Since F[D + (1 — 6)I] is the solution of Lyapunov equation (3.2), then

o o0
FID+(1-0)I] = / 2 ‘W Aty dt = Z,uk/ wkwkeAt dt. (3.9)
0 k=17

It is easy to see that if we assume wy € W, then (3.9) gives

_6 2 > . | wk’¢z wk)al/)J 2
(FID + (1= 8)I])z, ) < ||| kZ:luk ”21 "Re || Re | Cli=| Zuk

Assumptions {,ui}fi(f) C 41 and p; > 0 imply that ||z|; < C||z||. This together
with (3.3) gives the equivalence of the norms || - ||; and || - ||.

4. Determination of strong stabilizing controls

Let us denote by K, the intersection of the open left half plane and the
ring K, defined by (1.3). Then, using Lemma 1, we deduce that the system
Z = (A + bg*)x is strongly asymptotically stable if and only if equation (1.2) has
exactly N roots in each set U 1K, N=1,2,.

We rewrite (1.2) in the form (see also (1. 1)) ()\) =gV (\)+gd (\) = 0, where

N
b ¢n ¢na ~N <ba ¢n><¢naQ>
1 = R N.
Z )\ Y + ) g1 (>‘) Z )\n —A ) ne
n=1 n=N+1

Theorem 7. Assume that there exists v1 € (0,1) such that for any n € N one
has

|Re ((b, én)(bn, @))| > 11l(b; n){Pn, q)|- (4.1)

Let also ||b]| - |lq|] < 71Cs/4. Then the control u(xz) = (x,q) brings the strong
asymptotic stability if and only if for any n € N the function g () has no roots
in the closed right half plane.

Remark 5. For any fized N the question on the lack of the roots in the closed
right half plane for gi¥()\) can be solved by the standard Routh-Hurvitz method

(see, e.g., [17]).

Remark 6. The property (4.1) is satisfied, for example, for elements ¢ € H
which are, in some sense, close to £b. More precisely, consider vector ¢ = £b+a.
We denote for short by, = (b, dn), gn = (¢, Pn), an = (@, Py ). It is easy to deduce
for any z € C that |Rez| > v1|z| holds iff |Rez| > v1(1 — %)~ 1/2|Imz| Let us
fix n, assume |ay| < |by| and denote z = b,Gy. Using |Rez| > |by|? — |bptin| =
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b | (|brn| — |an|) and [Im z| = [Im (bpan)| < |bn||an| we easily get that |by| — || >
Y1 (1 =43 ~2|ay,| implies (4.1). So we obtain

A2
c,=—Y—_N_ *’1712 n=1,2,..
Mm+v1i-7

as a sufficient condition for ¢ = b+ « to satisfy (4.1).

lon| < 071|bn|a

Proof of Theorem 7. Our goal is to prove that for any n € N and
A € O(UN_|K,) one has
g (V)] > 15" (V)] (4.2)

The assumption |[b|| - ||g|| < 71C,/4 implies [gY(A)| < 71/4. The boundary
O(UN_ | K;) consists of 2N semicircles and 2N intervals on the imaginary axis.
Estimate (4.2) for A belonging to the semicircles can be obtained exactly in the
same way as in Lemma 1.

For A € K, N (iR) we first estimate ¢g7"(\) defined by (1.4):

Im(M, =X |~ 2°

Using this, we get

<ba ¢/€> <¢ka q) n it it et 71 ~N
—_— > —_—— > = > .
P00 > - L2 B -2 > 2> o)

M =

91 (V)] =gt (V) +

k
k

®
S =

Now we apply Rouché theorem for the boundary d(UY_, K, to deduce that the
function g(A) has the same number of roots in U)_; K, as g&¥ (). The proof of
Theorem 7 is complete.
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