Matematicheskaya fizika, analiz, geometriya
2004, v. 11, No. 2, p. 226-242

Gevrey regularity of global attractor for generalized
Benjamin—Bona—Mahony equation

lgor Chueshov*
Department of Mechanics and Mathematics V.N. Karazin National University
4 Svobody Sq., Kharkov, 61077, Ukraine

E-mail:chueshov@Quniver.kharkov.ua

Mustafa Polat

Center for Dynamical Systems and Nonlinear Studies, Georgia Institute of Technology
Atlanta, GA 30332-0190, USA

E-mail:polat@math.gatech.edu
Stefan Siegmund

Institute for Mathematics and its Applications, University of Minnesota
Minneapolis, MN 55455, USA

E-mail:siegmund@ima.umn.edu

Received July 28, 2003

We prove the Gevrey regularity of the global attractor of the dynami-
cal system generated by the generalized Benjamin—-Bona—Mahony equation
with periodic boundary conditions. This result means that elements of the
attractor are real analytic functions in spatial variables. As an application
we prove the existence of two determining nodes for the problems in one
spatial dimension.

Introduction

In the domain O = (0, L) x (0, L) x---x (0, L) C R™, where L > 0, we consider
the following initial-boundary value problem for the generalized Benjamin—-Bona—

Mahony equation:

u—aANug—bAu+div{F(u)} =h(z), z€0,teR", (0.1)

u(0,z) = up(z), z €O, (0.2)
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with the periodic boundary conditions
u(t,z + Le;) = u(t,z), wug(t,z+ Le;) = ug,(t,x) (0.3)

forallz € T; := 00 N{z; =0}, t € Rt andi = 1,2,...,n. Here {e;} is the
standard basis in R"”. We assume that a and b are positive constants, up(z) and
h(z) are given functions and

Fu) = (Fi(u), Fa(u), ..., Fn(u))

is a given polynomial vector field, i.e.,

l
Fj(u) =Y ¥,  j=1,...,n, (0.4)

k=1

where 1 <l <o0ifn<2,l=1orl=2ifn=3,andl =11if n > 4. We also use
the notation

div{F(w)} = 3" Fl(u) - v,
i=1

Equation (0.1) for n = 1 has been proposed by T.B. Benjamin, J.L. Bona and
J.J. Mahoni [5] as a model for the propagation of long waves. The model in-
corporates nonlinear dispersive and dissipative effects. This equation and also
related types of the Benjamin—-Bona—Mahony equation were studied by many au-
thors. Results on the existence and uniqueness of solutions can be found e.g. in
[3, 8, 15, 21, 26]. The long-term behavior of solutions, such as stability or the
rate of decay were studied in [1, 2, 6, 19, 22, 23]. In the one spatial dimension
case global attractors for problem (0.1)—(0.3) were investigated in [28]-[30]. For n
spatial dimensions the existence and finite-dimensionality of the global attractor
were proved in [7].

In this paper we study properties of asymptotic regularity of solutions to
problem (0.1)—-(0.3). Our main result (see Theorem 1.3) asserts that the global
attractor belongs to some Gevrey class. This implies that its elements are real
analytic functions in the spatial variables. A similar result is well-known for a class
of semilinear parabolic equations (see, e.g., [12, 14, 25]). However, the method of
proof for the parabolic case relies substantially on regularizing effects for parabolic
equations (the solution at any time ¢ > 0 is smoother than its initial value). This
effect makes it possible to prove the existence of an absorbing set consisting of
real analytic functions. This implies that every solution becomes a real analytic
function in the spatial variable after some transient time. For the case considered
here there is no regularizing effect. For this equation we can only prove the
existence of a uniformly attracting set of real analytic functions. The main point
here is to construct an appropriate decomposition of the evolution operator into
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decreasing and compact components. We rely on some ideas presented in [16]
(see also the paper [24], where the analyticity of the attractor was established for
a weakly damped and driven nonlinear Schrédinger equation and the paper [11]
devoted to a similar problem for a class of dissipative nonlinear wave equations).
We also note that the problem of Gevrey regularity of attractors and invariant
sets was recently discussed in the abstract setting [18].

As an application of Theorem 1.3 on the analyticity of the attractor for prob-
lem (0.1)-(0.3), we prove that this problem in one spatial dimension possesses
two determining nodes, i.e. the long-time behavior of the solutions is completely
determined by their dynamics in two points inside the spatial interval (0, L). We
note that for the first time the relation between the Gevrey regularity and the
existence of a small number of determining nodes was established in the paper
[20] devoted to the Ginzburg-Landau equation (see also [12, 13| and the sur-
vey [9] for similar results for other equations). We also refer to [9] and [10] for
a general discussion of the problem of existence of determining functionals for
infinite-dimensional equations.

The paper is organized as follows. In Section 1 we introduce notation, give
some background material on Gevrey classes and formulate our main results.
Section 2 is devoted to the proof of the theorem on the Gevrey regularity of the
attractor for the dynamical system generated by (0.1)—(0.3). In Section 3 we
establish the existence of two determining nodes in one spatial dimension.

1. Preliminaries and statement of main results

Let
O=(0,L)x(0,L) x---x(0,L) CR".

We denote by L2(O) the space of L2(0) functions with average zero, i.e.,

L2(0)={ue L*(0): [ u(z)dz =0
[

For any s > 0 let us consider the Sobolev space

HZeT((’)) =<ue H (R") :u(z+ Lej) =u(z), j=1,...,n, /u(m)dm =0
o

Since —A\ generates a positive self-adjoint operator in the space Lz(O) with the
domain D(—A) = H2, (0), we can define the positive operator A = (—A)% with

per .
the domain D(A) = H;eT(O) and equip the space H,,,.(O) with the inner product

(1, )5 = / (A u)(@)o(z) dz = (A°u, A%), s3>0,
(@)
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where (-,-) is the inner product in L2(0). Below we will denote by || - [|s the
corresponding norm in H?, (O) and by || - || the norm in L?(0®). We note that

; per
every element u € HS,.(O) can be represented in the form

u(z) = Jgnuj exp {z'(j,x)%”}, (1.2)

where the Fourier coefficients u; possess the properties ug = 0 and %; = u—; (the
bar denotes the complex conjugate) and

ot 2s )
Jull? = £ (f) > 137l < oo.
JEL™

Let s > 0 and o > 0. We introduce the Gevrey class G5(O) as the Hilbert space
consisting of real-valued functions of the form (1.2) such that

2m\ % ) dom
Il o) = luo + 2 () 32 P exp {1l P <0 (13
JEL™
We denote the corresponding inner product by (u,fu)(;g (0)- It is obvious that

G3(0) = Hp,,(O) for any s > 0 and G;(O) C Hyg,(O) for any s > 0,0 > 0

per
and m > 0. Moreover, every element v € G5(0), 0 > 0 can be extended as an

analytic function into the parallelepiped

c o \"
" = " Sze(——,—) }.
{zeC %ze(’),\sze( \/ﬁ’\/ﬁ) }

We denote by G2(0) the subspace of G2 (©) consisting of functions with average
zero, i.e.,

G2 (0) = {uea (o) : /u(w) do =0 = G5(0) N 12(0).

@]
It is clear that G%(0) = D(A%e”4), and
[ullgs (o) = 1A% ull® for all u € G5(0), (1.4)

where as above A? = —A with the periodic boundary conditions on O and D(B)
stands for the domain of the operator B.

Below we need the following lemma (for the proof see [12]).

Lemma 1.1. Let s > 2

5, 0 >0 and let u and v be in the class G5(O). Then
u-v € GL(O) and there ezists a constant Cs, independent of o, such that

lu-vllas ) < Csllullas ©) - Ivllas ©)- (1.5)
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We consider a class of equations somewhat more general than in the hypotheses
concerning the problem (0.1)-(0.3) given above. Our assumptions are as follows:
(A1) The problem (0.1)—(0.3) is well-posed in the class C(O,oo;H;;’;l(O)) for

some s > § — 1, i.e., for any up € H;;;l((’)) there exists a unique solution to

problem (0.1)—(0.3) in the class C(0, oo; H;;;l((’))) and this solution depends
continuously on initial data.

(A2) The evolution operator S; in the space H:}'(0) generated by the formula

per

Syug = u(t), where u(t) € C(0,00; H5+1(©)) is the solution to problem

per

(0.1)-(0.3), is dissipative in the space H:}'(0), i.e., there exists R, > 0

per

such that for every bounded set B from H}1(0) there exists to(B) such

per

that ||Siylls+1 < R« for all ¢t > to(B) and y € B.

(A3) h(x) belongs to (';;0((9) for some oy > 0 and for every j = 1,...,n the
function F)j(u) can be written in the form

o0
Fj(u) =) bt
k=1
where the coefficients {b}c} satisfy
o .
gj(r):Zrk|b,7€\<oo forall O0<r<ry, j=1,...,m, (1.6)
k=1
where r¢ is large enough.

The following proposition describes the cases when the assumptions (A1)—(A3)
are valid.

Proposition 1.2. Let n <3, h(z) € Ggo((’)) and F(u) has form (0.4). Then
the properties (A1)-(A3) hold in the following cases: (a) s = 0,n =1; (b) s =
1,mn <2;and (c) s =2,n < 3.

P roof. In the case (a) the assertion follows from [7, Theorem 5|. To obtain
the proof for the other cases we use properties of the linearized problem (see, e.g.,

[7]) and the standard stepwise arguments. ]

Our main result is the following assertion.
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Theorem 1.3. Assume that hypotheses (A1)-(A3) hold. Then the semigroup
S; generated in H3I1(O) by equations (0.1)-(0.3) possesses a global attractor A.

per

This attractor A belongs to the class G§+1(O) for some 0 < 0 < 0y and
sup {||u||2Gg+1(o) tu€ A} < 00.

Thus all elements of the global attractor are real analytic functions in the
spatial variables.

Theorem 1.3 also makes it possible to prove the following assertion on the
existence of two determining nodes for problem (0.1)—(0.3) in the case of one
spatial dimension.

Theorem 1.4. Assume that n = 1 and hypotheses (A1)-(A3) hold with s = 1.
Let x1 and xo be two nodes such that 0 < 1 < x9 < L. Let u(t) and u*(t) be
two solutions to problem (0.1)-(0.3) from the class C(0, oo; ngT(O)). Then there
exists Ag, independent of u and u*, such that if o —x1 < Ay, then the condition

lim |u(t, :I"]) _U*(taxj” =0, 7=12,

t—00
implies
Jim [lu(t) —u*(#)[l2 = 0.

Theorem 1.4 means that the long-time behavior of any solution to problem
(0.1)—(0.3) in the case of one spatial dimension case is completely determined by
the values of the solution at any two nodes that are sufficiently close.

2. Gevrey regularity of the attractor

In this section we prove Theorem 1.3.
Let B be a bounded set in H;;t.l(O). Assume that u(t) is a solution to problem
(0.1)—(0.3) with initial data up € B. Thus u(t) satisfies the equation

ug + aA%uy + bA%u + div{F(u)} = h, t e R, (2.1)

Here A% = — A\ is the positive operator in L?(O) with the domain D(A2%) =
H2,.(0). Assumption (A2) on the dissipativity implies that there exists to =

per

to(B) such that
sup{||u(t)||§ + a||u(t)||§+1 :ug € B} < Rg for all t> tg=to(B), (2.2)
where R? = [a + (L/2m)?] R2. Let

Py (t) :== Pnu(t),
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where Pp is the orthogonal projector in LQ(O) onto the subspace

. 2
Ly ={u€ L*0):u(z) = Z uj exp {z(j,x)%} Juj=u_j o . (2.3)
0<|jl<N

In the subspace QnL2(O) with Qn = I — Py we consider the following auxiliary
problem

wy(t) + aA?wy(t) + bA%w(t) + Qndiv{F(Py(t) + w(t))} = Qunh (2.4)
with the periodic boundary conditions:
w(t,z + Lie;) = w(t, z), wg, (t,z + Lie;) = wy, (t,z), z€ly, te RT, (2.5)
fori =1,...,n, and with the zero initial data at the time ty = to(B):
w(ty, z) = 0, z e 0. (2.6)

We note that equation (2.4) formally arises as the projection of (2.1) onto the
subspace QyL?(O). However, the function v(t) = Py(t) +w(t) is not necessarily
a solution to the original problem (0.1)—(0.3), because of the zero initial data
for w(t) at time t5. In the following lemma we show that a solution w(t) of
the problem (2.4)—(2.6) belongs to the Gevrey class in the spatial variables and
approximates the solution u(t) to the original problem as ¢ — oco. These properties
allow us to prove the existence of a uniformly attracting set bounded in some
Gevrey class, and to invoke standard results on attractors for asymptotically
compact dynamical systems (see, e.g., [17] or |27]).

Lemma 2.1. There exists Ng > 1 such that for any N > Ny we can find
0 <o =on < ag such that problem (2.4)-(2.6) has a unique solution in the class
C(tg, oo; QN(;’i(O)). Here Qn = I — Py and Py is the orthoprojector onto the
space Ly defined by (2.83). This solution possesses the property

[0 (Ol (o) + allw(®Pgen o) < B forall ¢t =1o(B), N >N,
(2.7)
with R > 0 independent of N.

P r oo f. Instead of (2.4) we consider in the space Q. L?(O) the following
equation:

wy(t) + aA?wy(t) + bA?w(t) + Qu ndiv{F(Py(t) + w(t))} = Qu bk, (2.8)
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where Qu,ny = Py — Py with M > N. It is obvious that this equation has a
unique solution

wp(t, ) = Z w;(t) exp {’L(], x)%r}, war(to, z) =0,

N<[j|<M

on some interval (¢g, o+ Ta,n). If we prove the uniform estimate (2.7) for was(t)
on this existence interval, then we are able to conclude that this solution can be
continued on the half-axis (g, 00). Then we will let M — oo and obtain existence
of a solution to the problem (2.4)-(2.6) with the property (2.7). It is easy to see
that this solution is unique. Thus we need to prove only the uniform estimate
(2.7) for was(t) on the interval of existence. Below we omit the subscript M for
the sake of notational simplicity.

We multiply equation (2.8) by A2*¢?*4w with o < op in L%(0). Using (1.4),
we get

d
57 w@)[&s o) + alw®)gei o) ) + blw®l e o
2dt (0) s (0) s (0)

+ (Qndiv{F (Py(t) + w(t))}, A%e*Aw(t)) = (Qnh, A%e*dw(t)).  (2.9)
Since (Qnh, A%e?74w) = (A%e“ Qnh, A*e”Aw), it is easy to see that
1
(@uh, 426740)| < bl o) + €100 o)

for any €; > 0. Now we estimate the nonlinear term. Since

(Qndiv{F(Py(t) +w(t)}, A¥ e’ w(t))

= Y (ATIQNF(Pr (1) + w(h), A*e” wy, (1)),

=1

we have

|(Qudiv{F(Py (1) +w(t)}, A% > w(t))|

S IRNFUPN (B) + wd)las o) [0 oz o)
=1

n n
< 1. ST HIQNF(Py (1) + wE)Z 0) + eallw®) 2o
=1

IA

for any positive e3. Therefore from (2.9) we get

d

531V )+ (0= ea)[[wt)l|gssr o) — erllw®)llgs (o)

IA

n ~ 1
o ; |QNF(Pr (1) + w2y ) + 3 MGz 0 (210
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where
V(t) = [w(®)l% 0) + alw(®)Zi o -

Since

L 2(s*—s) . i}
||w||2Gg((’)) < (m) ||w||?;g*((’))7 w € QNGZ (O)a s <s, (211)

choosing €; and ey in an appropriate way from (2.10) we get constants g > 0, Cy
and Cy independent of N such that

d
dtV( ) +2uV(t) < Ch Z |Qn Fi (P (t) + w(t)l[&s o) + Collbllgs o) - (2:12)
=1

Now we estimate the values ||QnF;(Py (t) + w(?))|| %, (o) Telying on the represen-
tation of F;(Pn(t) + w(t)) in the form

Fi(Py (t) + w(t))

= Fy(Pn(t)) + F/(Pn(t +/ (1 = 7)E/(Pn(t) + Tw(t))w(t)? dr.
0

Let s* be any number with the property max{%,s} < s* < s + 1. Using
Lemma 1.1, we have

o0

1Fi(Pn ()l gs (o) < Z ||Gs (0)
k=1

< Z b8 |CEY| Py (¢ )IIZ‘ST*(@) < Cs+ g (Cs*“PN(t)HGg* ((9)) -

Here C; is the constant from Lemma 1.1 and g;(r) is defined by (1.6). In a similar
way we obtain

I (Py )0 @llgy 0) < Cs- IF; (P () lag 0) ol gy (o)
< C- gi(Cs [P (®)llgs (o)) lw (Bl gs* (o)

where g;(r) is the derivative of g;(r) and the constant C' does not depend on N.
The same argument gives

|(FY (P (8) + ro(®))w (), w(®) gy o)
CIIF (Pr (t) + w(t)) g o)l (®) 2 o
O g (Cor IPY D)l (0) + Co [0l (0)) - 10(8) 24 o

IN N
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where g;' is the second derivative of g;(r) and the constant C is independent of
N. Thus we have

FIVs) = S IQnF(Pe() + )y o)
i=1
< Go(Cs- 1PN (Bl gs* () + G1(Co |IPn ()| s (0y) - ||w(t)||ég* )
+ G2(Cs- | Pn (t) g™ (0y + Corllw(t)l s (0)) - ||w(t)||4g* (0)

Here Gi(r) = C - Y1 l[g(k)( )2, k € {0,1,2}, where g( )(r) is the derivative of
gi(r) of order k and C does not depend on N.
Since s* < s+ 1, from (2.2) we have

1Pn ()l gs* o) < cot®™ [Py ()lls+1 < coe® Ry, t>to =to(B),

where & = 270 /L and cp is independent of N. Therefore if we choose 0 = N1,
we obtain

F(N,5") < Co+ Cullw®)y (o) + GalCa + Cor [0l 0) - 10Oy o
for all ¢t > g, where C; does not depend on N, j € {0,1,2}. Consequently (2.11)
implies

L

S IQNE Py (@) +uO)lyo < (52)  FNs)
i=1

< Cot OGN B2 o

+ N 4Gy(Co + Crrlw(®) | o1 @0 O 0

where § = s + 1 — s* > 0. Therefore from (2.12) we get

%V + UV < O+ CoN"9V2Gy(Cs + C4V'?) (2.13)

for all N large enough, where the constants C; > 0 do not depend on N. It is
clear that for N large enough the function

F(V) = —uV + Cy 4+ CoN V2. Gy(Cs + Cy - V2)

has a simple root Vy = Vo(N) > 0 such that F(V) > 0 for V € (0,V;). Since
V(to) = 0, this property of F (V) and inequality (2.13) imply that V' (¢) < V; for all
t > tg. Moreover, since Vo(N) — Ciu~! for N — oo, we have that Vo(N) <V,
where V) does not depend on N. Therefore, we have

lo (@)% o) + allw @i o) < Vit = B £ to, (2.14)

for N large enough with any 0 < ¢ < N~! < gy. Thus we obtain (2.7). [ ]
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Lemma 2.2. Let u(t) be a solution to the problem (2.1) and (0.2) with initial
data y = ug € B, where B is a bounded set in H;;'f(@), such that (2.2) holds.
Assume that w(t) is the solution to problem (2.4)—(2.6). Then there exists No > 0
such that we have

Tim sup{|Qwu(t) — w(®)|? + allQuu(t) — w(t)|24} =0 (2.15)
— 00 yEB

for every N > Ny, where Qn = I — Py.
Proof. Let v(t) = Qnu(t) —w(t). Then v(t) is a solution to the problem

ve(t) + aAu(t) + bAu(t)
+Qndiv{F(u(t)) — F(Pn(t) + w(t))} =0, (2.16)

with periodic boundary conditions and with the initial data:
’U(to) = QNu(t()). (2.17)

We multiply equation (2.16) by A% in L?(O) and get

d
57 (@IS +allv®)Z,1) +bllo@)I3 4
2dt

< (Qndiv{F(u(t)) — F(Pn(t) +w(t))}, A*v(t))| = D(N,t). (2.18)

Now using integration by parts and the Holder inequality for the right hand side
of inequality (2.18) we get

D(N,t) < ) [(A°Qn(Fi(u(t)) — Fi(Pn(t) +w(t)), Avg,(1)))]
=1

IN

> 1Qn (Fi(u(t)) — Fy(Pn (t) + w®) s llo ()]s
=1

< @) + 4% QN Fi(u(t), w®)||?
=1

where € > 0 is arbitrary and

Fi(u(t),w(t)) = Fi(u(t)) — Fi(Py () + w(?)), fori=1,2,...,n.

Let
W (t) = [[o@)]3 + allo(®)[1541-
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As above it is easy to prove that there exist positive constants p and C' indepen-
dent of N such that

LW (1) + 20 (1) < 0D I @n Fifw(t), wle)? (219)
=1

Since Py (t) + w(t) = u(t) — v(t), we have
1
Fj(u,w) = /FZ,(’U, —Tv)v dT .
0

Therefore

1
QN Fi(u, w)lls < coll @uFi(u, w)lls+ < co / I1E; (u = T0)oll5- dr,
0

where s* is any number with the property max{%,s} < s* < s+ 1 and ¢ is
independent of N. Lemma 1.1 with o = 0 and assumption (A3) imply
s*)

IF; (u — To)]|s« < C-||F; (u— 70)]| 5+ [v]|s+ < C1 - g}(Callu — Tv

[olls~ -

Hence

Y lQnEi(u(t), w@)l < C- Y [gi(Callu(t) — ro(@)ls)* [0 @I -
=1

i=1
From (2.2) and (2.14) with o = 0 we have
||lu(t) — T’l)(t)“z* < collu(t) — T'U(t)||§+1 < C(Ry,R) for all t >ty = to(B).

Consequently using (2.11) with o = 0 we obtain

(B3

n
S IQNFi(u(®), w®)||? < C(Ro, R) - (1 + N) 2+157)
i=1
for all t > tg = to(B). Thus (2.19) implies that there exists Ny such that

%W(t) +uW(t) <0

for all ¢ >ty = to(B), N > Np. This inequality implies W (t) < e #(t—0)W (44)
for all t > to = to(B) and N > Ny. Therefore we obtain (2.15). This completes
the proof of Lemma 2.2. [
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Lemmas 2.1 and 2.2 allow us now to conclude the proof of Theorem 1.3.

Proof of Theorem 13. Let usfix N such that the assertions of
Lemmas 2.1 and 2.2 are valid. Assume that B is a bounded set in H1!1(0) and

per
u(t) = Syug, where ug € B. Let w(t) be the corresponding solution to problem

(2.4)—(2.6). From relation (2.2) and Lemma 2.1 we have
1Py u(t) + wt)[Gs o) + all Prult) + wt) g o) < B = o(BG + R?)

for all ¢t > to(B). Since Siug = (@nu(t) —w(t)) + (Pnvu(t) + w(t)), Lemma 2.2
implies that the set

G ={ue s 0) + lulby @ +alulZum g < R}

(@)

is uniformly attracting for S;. Since G is compact in H;j;l(O), the standard

theorems on the existence of attractors for the asymptotically compact case (see,
e.g., [4, 17| or [27]) imply that A C G. [ |

3. Determining nodes (n = 1)
In this section we prove Theorem 1.4 on the existence of determining nodes
for problem (0.1)—(0.3) in one spatial dimension.

Lemma 3.1. Assume that n = 1 and that assumptions (A1)-(A3) are valid
with s = 1. Let ug € Hp,,(0,L). Then the solution u(t,x) to the problem (0.1)-

(0.3) belongs to the space C*([0, -I-oo);ng,,(O,L)) and there ezists R > 0 and
to = to(ug) such that

lur N3 + lu@®)l3 < R%, t>to. (3.1)

Proof By (Al) u € C([0, —I—oo);HzeT(O,L)). From hypothesis (A2) we
obtain that ||u(t)||2 < Ry for t > ¢y with some t3. Therefore (0.1) implies that

(1 — ad?)u; € C([0,400); L2(0, L))

and
(1 — ad?)us(t)|| < C(R,) for t>tg.
Thus u; € C([0,+00); H2,(0, L)) and [u(t)]|2 < C(R.) for t > to. m
Lemma 3.2. Assume that 1 and xo are two nodes such that 0 < z1 < z9 < L.

Let u'(t,z) and uQ(t,‘x) be two solutions to problem (0.1)-(0.3) for n = 1 from
the class C*(0,4+o0; H2,,.(0, L)) such that

per

luf ()3 + [uf ()3 < R* for t>tg, k=1,2, (3.2)
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for some R > 0 and tyg > 0. Then there exists Ag = Ag(R) > 0 and p > 0 such
that under the condition 0 < z9 — 21 < Ag, we have

t
Ju®I +allus (O3 < Cre ™9 4Gy [ e malu(ra)ldr  (33)

for any t > s > to, where u(t) = u(t) — u*(t) and C; are positive constants
depending on R. Here and below we use the notation: A = (z1,z2), |A| = z9— 11

and
T2

lullZ = /uQ(w) dz, |ullf A = [[ullZ + allus|[A-

Z1

P r oo f. We use the same approach as in [20]. From (0.1) we have that u(¢, z)
is a solution to the equation

Up — QUtzg — bugy + (F(u') — F(u?®)) =0, z€(0,L), t>0.

Z

Multiplying this equation by u(t,z) and integrating by parts from z; to zo, we
obtain

1d

§£||U(t)||ia + blus (t) 1A (3-4)
_ n(t,wg)—n(t,x1)+5(t,x2)—5(t,x1)—/(F(ul)—F(uz))wud:v,

where n(t, ) = au(t, x)uy(t, z) and 6(¢, ) = bu(t, x)uy (¢, x). Since H;er(O’L) is
embedded into C([0, L]), it is easy to see from (3.2) that

1(t,22) — n(t,20)| + [3(t,72) — 6(t,21)| < Cp max [ult, 1)

and
T2
| [ (P~ F2) wds| < Cnclulls + e,
Z1

where € is any positive number. Choosing € = b/2 and substituting all the esti-
mates into (3.4), we get the following inequality:

d b
Tu®Iia + Zlu@®a < Crmax|u(t, z)| + Crllu(®)3- (3-5)
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Since
T

u(@)? — u(er)? = 2 / wal€) - u(€) dé < 2l - llusla

it is easy to see that
2
lu@®lIZ < 2Allult, 21)|* + 4 AP lug (t)3 -

Substituting this into (3.5), we get

d 9 b 9
= ha <
HIOIR o+ 52 )R & < Crmaxut, )
for |A| small enough. This inequality implies (3.3). |

Now we have everything at hand to prove Theorem 1.4.

Proof of Theorem 1.4. Assume that

lim |u(t7$j) - U’*(tax]” =0, 7=12,

t—00

for 0 < 2o — 21 < Ag with Ag from Lemma 3.2. Then Lemma 3.2 implies that
lim {[[u(t) — u*(t)l|a + alluz(t) — ug(t)[|a} = 0. (3.6)
t—00

Assume limy_, o0 ||u(t) — u*(t)||]2 = 0 does not hold. In this case, since the global
attractor A is a compact set in ngr(o, L) and distyr (u(t),A) =0, t— +oo,
for any solution u(t), there exists a sequence {t,} and elements y(z) and y*(z)
from A such that

lim [Ju(ty) — u*(ty)|l2 > 0 (3.7)

n—o0

and lim, o |[u(ty) — yll2 = 0 as well as lim,,_, ||u*(t,) — y*|]2 = 0. It follows
from (3.6) that y(z) = y*(z) for z € A = (x1,22). Since by Theorem 1.3 the
elements of the attractor A are real analytic functions in the spatial variable, we
have that y(z) = y*(z) for any =z € (0,L). This contradicts (3.7) and completes
the proof. |
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