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We consider the strong stabilizability problem for delayed systems of
neutral type. For simplicity the case of one delay in state is studied. We
distinguish a special class of such systems for which we give a constructive
solution, without using the derivative of the localized delayed state. Our
results are based on an abstract theorem on the strong stabilizability of
contractive systems in Hilbert space. An illustrative example is also given.

1. Introduction

The problems of stability and stabilizability are of great importance in the
theory of delayed systems [2, 9, 6]. In this context note that the majority of
works deals with the so-called exponential stability or stabilizability. In this case
the conditions of stability (stabilizability) are well explored for both systems with
ordinary delay and of neutral type [2, 10, 9, 6, 17, 15]. Note also that this type of
stability is similar to the stability for finite-dimensional linear systems. However,
for systems of neutral type appears an essentially different kind of stability — the
so-called strong stability.

Consider a system of the form

.’L‘(t) = Ao.’I)(t) + A1$(t — 1) + A_l.’i)(t — 1), (1)
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where z € R", Ag, A} and A_; are n X n-matrices. It is well known [6] that (1)
is exponentially stable iff Re(o) < —a < 0, where o = {\ : det(A] — A_1de™ —
Ao — Are™?) = 0}, and Re(o) is the real part of all values in o.

In particular, this condition holds [9] if ||[A_1]| < 1 and Re(o) < 0.

On the other hand, the system (1) is unstable if matrix A_; possesses at
least one eigenvalue p such that |u| > 1. At the same time, it turns out [2, 3]
that asymptotic stability of (1) is possible under the weaker condition Re(o) < 0,
which, in particular, may appear when there are some eigenvalues pj;, 7 =1,....,k
of matrix A_; such that |u| =1, 5 =1,...,k. As it is shown in [3], in this case
solutions of the system (1) decay essentially slower than exponentials, namely as
functions 1/t%, 8 > 0.

An explanation of this effect can be found using the model of neutral type
systems as abstract differential equations in Banach space and the results of the
theory of strong asymptotic stability originated in [1, 13, 20] (see also the bibli-
ography in [14]).

Note also that the results on the strong stability find a natural application
in the control theory for analysis of the strong stabilizability of contractive semi-
groups, for example [4, 16, 12, 11, 19].

The main goal of the present paper is to show an extension of the stabilizability
theory to the case of control systems of neutral type. To justify this point we
consider a special class of neutral type systems (including, however, all the one-
dimensional systems) and give a constructive solution of the strong stabilizability
problem for this class based on an abstract theorem from [11].

The paper is organized as follows. In Section 2 we formulate the problem of
strong stabilizability and interprete it in the language of abstract control systems.
In Section 3 an operator analysis of the obtained system is given. The main results
are given in Sect. 4. We design explicitly a strong stabilizing control and give an
illustrative example.

Finally notice that the analysis of the strong stabilizability problem under
some more general assumption is to be given in one of our forthcoming works.

2. The model and the statement of stabilizability problem

For simplicity we consider a control neutral type system with one delay in the
state
z(t) = Aoz(t) + A1z(t — 1) + A_12(t — 1) + Bu(t), (2)

where z € R",u € R", A;,7 = 0,1, —1 are n X n-matrices, B is a n X r-matrix.
The stabilizability problem amounts on finding a linear feedback control law
u = p(z(+)) such that the closed loop system

z(t) = Aoz (t) + Arz(t — 1) + A_1&(t — 1) + Bp(z(-))
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becomes an asymptotic stable one. In order to formulate the problem more pre-
cisely let us consider an abstract functional model of the system (2). Following
Yamamoto and Ueshima [21] (see also [10] and a more general system in [18]), we
put

() :0—2(t+6), 6¢€[-1,0]

and y(t) = z(t) — A_1z(t — 1). Let Z = C" x Ly[(—1,0),C"]. For z; = (W?Z’_)> €

Z, © =1,2, the scalar product in Z is given by

0
(21, 22)z = {q1, @2)n + /(@1(9),(,02(9))@1 de.
1

The corresponding norm is denoted by ||.||z. The indices will be omitted if it is
not necessary.
Introduce an operator A : D(A) — Z defined by

() (e )

o) ={(,2)) sa= 00 = 40D, ol) € WVl(-1,0),71}.

With these notations the system (2) can be rewritten as
d (y(t) ) (y(t) )
— =A + Bu(t y 3
dt (xt(') (") ) ®)

where B = (}g) is a linear operator B : C" — Z.

It is known [21, 22| that A generates a Cp-semigroup in Z and that its spectrum
o(A) is the set

o(A) = o = {X:det(\] — A_ de™ — Ag — Aje™) = 0}.

and consists of eigenvalues only. Denote further by > the set of all nonzero
eigenvalues of matrix A_;. Then [2] for any u € )_ the set o includes a family of
eigenvalues

Zu = {\; =log|u| +i(arg p + 27k) +0(1), ke Z}, (4)

where 0 is meant as k — +oo.
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The substitution of a feedback control u = p(z(+)) into (2) amounts to trans-
forming system (3) to the form

d t ~ t

3 (10) - x(10). -
dt \ z4() (-

where A is a perturbation of the infinitesimal operator A by an operator of the

form BP, where P : Z — C". There are three different kinds of such a perturba-
tion.

1. Perturbation with a bounded operator (class 1).
This corresponds to the case where we admit feedback controls

0
w="P() = P(a(t) — Azt — 1)) + /ﬁ(o)x(t +6)do,
s}

where P is a real (r x n)-matrix, P(6),0 € [-1,0] is a real square-integrable
(r x m)-matrix-function. N
In this case BP is a bounded operator and so [7] the perturbated operator A is

infinitesimal and D(A) = D(A). Note, however, that possibilities of stabilization
in this class of controls are rather restricted.

2. Perturbation with an operator bounded with respect to A (class 2).
This corresponds to the choice

0 0
w=P(a()) = / B(0)i(t +0)do + / B(O)x(t +0)d0,

-1

where P(0), P(6), 6 € [-1,0] are real square-integrable (r X n)-matrix-function.
In this case one can easily check that the operator BP is a bounded with respect

to A [7], i.e., for some a,b >0
A (90((1))H “’H(w?-))“'

e ()] =

This implies D(A) = D(A). At the same time, the infinitesimality of A must be
proved separately (see [7]). One can observe, however, an important particular
case for our further purpose, for which this infinitesimality is obvious. Let

0
w=P(a()) = Poslt) + Pra(t— 1) + / BO)a(t + 6)do,
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Py, Py are (rxn)-matrices and P(8) is a square-integrable (r x n)-matrix-function.
Then the operator A can be represented as a perturbation of the infinitesimal
operator Aj:

~( qa\ _ ((Ao+ BPy)q+ ((A1+ BP1) + (Ao + BPp)A_1)p(—1)
()= ( Zo() ). ©

by a bounded operator. So it is also infinitesimal. Consider the possibilities of
stabilization by feedback controls of class 2. It can be proved that the spectrum
o(A) = 7 of the perturbed operator A is given by

5= {)\ . det (/\I — A e — Ay — A — BATI — Bﬁ) - o} ,

where

0 0
I = / MP9)ds, 1= / A P(6)ds
-1 -1

and then it also includes the families Y ¥ of the form (4) for any g € > . This
means that the exponential stability of the closed loop system (5) is possible only
in the case when |p| < 1 for all 44 € > . On the other hand, it is clear that the
system (5) is unstable if there exists at least one p € > such that |u| > 1. It
remains one more case to be considered. Let us make the following assumption:
(al) > C{w: |w| <1} and there exists p € Y_ : |p| = 1.

In this case system (5) cannot be exponentially stable by a feedback of class
1 or 2 but probably be strongly stable. That leads us to the following statement:

Problem of strong stabilizability (PSS). Let the matriz A_y satisfies
(a1). Find conditions on system (2) (or (8)) under which there exists a feedback
control of class 2 such that the perturbed operator A in (5) is infinitesimal and all
the solutions of this equation tend to 0 as t — +oo in the norm of Z.

We consider PSS in the further sections. Now we mention one more way to
formulate the stabilizability problem.

3. Perturbation with an operator unbounded with respect to A (class 3).
It is shown [17, 15] that the possibilities of stabilization of system (2) are
essentially wider if we admit feedback controls of the form

0 0
w=P()) = Pt —1)+ / B(0)i(t + 0)d0 + / PO)z(t +0)ds.  (7)

-1

This kind of stabilization is out of our consideration. We only notice that the use
of a control such as in (7) means, from the operator point of view, a perturbation
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of A by an operator BP which is not bounded with respect to \A. In particular,

that implies D(A) # D(A). So even if we prove infinitesimality of A, the domains
of solutions of the initial and closed loop systems are different.

3. Operator analysis of the model

We consider PSS and complete (al) with the following assumptions charac-
terizing the class of systems (2) we deal with:
(a2) All the eigenvalues p € ) such that || = 1 are simple in the sense that
there are no Jordan chains corresponding to such eigenvalues.
(a3) The finite-dimensional system

z(t) = Apz(t) + Bu(t), zeR' uel (8)

is controllable, i.e., rank (B ApB - -- Ag_lB) = n. In particular, this implies that
(8) is stabilizable, i.e. there exists a linear feedback control v = P{x such that
Re(o(A + BPRY)) < 0.
(a4) rank (A; + AgA_1 B) = rankB.

Let us put into (2) a control u(t) = Pyz(t) + Piz(t — 1) + v(t). That leads to
replace (3) by the system

d (y(t) ) - (y(t) )

— =A + Bu(t),

dt (-’Et(') Fa) )
where A is given by (6). Due to (a4) for any Py € R"™") there exists a matrix
P =P (R) € R("*") such that

A1+ BP; + (Ay + BPy)A_1 = (A1 + AgpA_) + BPyA_, + BP, = 0.

For this choice of P, operator .,Zl takes the form

A (o) = () (o) ©

Proposition 3.1. Let Ay be given by (9). Then

i) 0(A1) = (Ao + BPy) Ulog 3.

ii) Under the assumption o(Ag + BPy) Nlog > = 0 the set of eigenvectors of
A is as follows:

a) to each eigenvector d € C* of Ayg+ BPy with eigenvalue A there corresponds

an eigenvector
~ d
d=
(I— e*)‘A_l)*le’\a

of Ay with the same eigenvalue;

~—
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b) to each eigenvector g € C" of A_1 with eigenvalue p there corresponds a
family {gr ez of eigenvectors of A :

N (I—eA_y)g 0
9k = e)\ggg = e,\;;eg )

where Xy = log |u| + i(arg p + 27k), k € Z s the eigenvalue corresponding to g.

Proof. Let (w(g-)) be an arbitrary eigenvector of A; and ) be the cor-

responding eigenvalue. Taking into account (9), we have £p(f) = Ap(0) and
(Ao + BPy)q = A\q. From the first equality we obtain ¢(#) = e*¢, c € C*, ¢ # 0.
Since ¢ = ¢(0) — A_1¢(1), then the second equality yields (Ag + BPy)(c —
A je ) — Mc— A 1e7*c) = (Ag + BPy — XI)(I — A_1e7*)c = 0. Therefore,
either (I — A_je™*)c is an eigenvector for Ag + BPy corresponding to A or ¢ is an
eigenvector of A_; corresponding to e*. This alternative completes the proof. m

Using (a3) one can choose Py € R"*™ in such a way that the spectrum
o(Ao+BPR,) consists of n distinct negative eigenvalues which do not belong
to the set log>". Let further P be such a matrix and P = P;(PJ) and A}
be the operator (6) corresponding to the choice Py = Py, P, = P{. Then, by
Prop. 3.1, the spectrum o(A?) belongs to the semiplane {X : Re(\) < 0}. Our
next goal is to prove that the system

L) -ACH) w0

is strongly stabilizable by linear bounded controls. To show that, we first prove
dissipativity of the operator A in some equivalent norm in Z.

Let dj,j = 1,...,n be the eigenvectors of Ag + BPY corresponding to Aj <0.
Denote by D the nonsingular matrix D = (dy ds --- d,,). Now observe that, due
to (al) — (a2), the matrix A_; can be represented in the form

A1 =GJG™, (11)

where G is a nonsingular matrix and J is a contraction, ||J|| < 1. As the matrix
J one can take, for example, a block diagonal form of A _; which blocks are

e v 0 .- 0
0 pp vg -~ O

Je=1. . . e
0 0 0 -

320 Matematicheskaya fizika, analiz, geometriya , 2004, v. 11, No. 3



Strong stabilizability for a class of linear time delay systems of neutral type

where |vg| < 1 — |ug|, & = 1,...,£ (note that all the eigenvalues pj of A_;
such that |ug| = 1 are simple (a2)). Finally let us introduce the linear bounded
operator F': C* — Ly[(—1,0),C"] defined by

Fg=F Xn: gid; | = -G Xn: g (1- A,le—M)*1 Nld;  (12)
j=1 j=1

If we denote by A(6) the matrix with column (I — A_le*)‘i)f1 e*%d;, then F can
be be written as
Fq= -G 'A(H)D1q. (13)

Consider now a linear bounded operator 7' : Z — Z given by

et (J-)) B (? GO> (ﬁ-)) B ((Fq)(e) —?(;glsow))’ .

the corresponding inner product < .,. >7=< T.,. > and the equivalent Hilbert
norm || - ||z in Z defined by

I()

This new norm allows to get the dissipativity of the operator .2((1)

|75 = (o /0 [(F0)(®) + G~ p(6) a0

Proposition 3.2. Operator A? is dissipative in the norm || - |1, i-e., for all
2= (;6) € D(A?) = D(A) we have Re <.2((1)z,z>T <0.

Proof. Letz= (@0((1-)) € D(AY), then we have

(Az2) = (D7'(Ao + BPS)g, D™'q) + R, (15)

where

0

R= / <(F(A0 +BP))q)(9) + G~} d

55 (FO0) +G7p(0))db. (10

The vector ¢ may be decomposed as g = Z;-’Zl gjd;. Then

n
(D7 (4 + BPY)a, Dg) = 3" Al 2
7j=1
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and, therefore,

Re ((D~'(4o + BP3)q, D7) = 3" Re(3y)lld;|* <. (17)

Taking into account (12), we have

(F(4o + BP)q)(0) =—G 3 q; (T— Ase ™) el = %(Fq)w)-
j=1

Therefore the term R given in (16) may be written as

0
R = [ (P00 + 6760 (F0) + G p(0)) a0

= (Fq)(9) + GO

0
- [{F0®)+ 6 p00), 3(Fa)0) + G (o) Y a0
21

and this gives
Re(R) = 5 (I(Fq)(0) + G p(0)* — |(Fg)(-1) + G o(-D)IP) . (18)

Note that, as z € D(A), we have

N =

0(0) —A_1p(-1) =¢ = _Z g;d;. (19)

Let us put ¥(0) = ¢(6) — Z?Zl qj (I— A_le*’\j)*1 e*%d;. Then one can easily
check that (19) implies

P(0) = A_19(-1). (20)
From (12) we obtain

(Fg)(0) +G'p(0) = -G (Z g (I— AN Mo, - <P(9)>
j=1

= G ().

Hence, taking into account

—~

20), relation (18) can be rewritten as

Re(R) = (IGO0 ~ I (-1)[?)

N =
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1 _ _
= UG A= — 167 (= D))
Let us substitute G~'4(—1) = w and make use of (11). That yields

Re(R) = o (lJw]” — [[wl®) < 0. (21)

N[ =

Comparison of (15), (17) and (21) completes the proof. ]

Corollary 3.3. It follows from Prop. 3.2 that the semigroup {e'ztl]t}tzo 18
contractive in the norm || - ||7. In fact,

d . O .
aHeA(lJtzH% = 2Re <<A(1)e“4(1)tz, eA(l)tz>) <0.

This means that (10) is a contractive system in the space Z with norm || - ||

(see [11]).

4. The strong stabilizability

In order to analyze strong stabilizability of (10) we make use of the following
theorem on the strong stabilizability of contractive systems [11, Theorem 5]:
Consider a system of the form

d

Ez:Az-l-Bu, z€ HyueU,

where H and U are Hilbert spaces, the operator A generates a strongly continuous
contractive semigroup {e**};>¢ and B a linear bounded operator from H to U. If
there exists ty > 0 such that the set

ole)n{weC:|w =1}

is at most countable, then the system is strongly stabilizable (with the aid of
linear bounded control law) if and only if there does not exist an eigenvector
zy of the operator A corresponding to an eigenvalue A9, Re(Ag) = 0, such that
zop € Ker B*. If this condition holds then the strong stabilizing control can be
chosen as u = —B*z.

It has been shown that the semigroup {e“ztl)t}tzo is contractive in the space Z
with norm || - ||7. It is known [5] that

U(e"ztl]to) C exp(toa(j(f))
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(S means the closure of S). From Proposition 3.1 we have for to = 1:
exp(0(AY) = exp(o(4° + BR)) U
and, therefore, this set is finite. Hence the set
U(e"z(l]) N{weC:|w =1} C U(e“z(lj) C exp(c(A?))

is also finite. Thus, on the basis of [11, Theorem 5] we conclude that the system
(10) is strongly stabilizable (notice that stabilizability in norms || - || and || - |7 is
equivalent) iff there exists no eigenvector zy of the operator .Z(l) corresponding to
a pure imaginary eigenvalue such that

zy € Ker B, (22)

where B} : (Z,||-||7) = C" is the adjoint operator to B in the norm || - ||7. In this
case the strong stabilizing control can chosen in the form

o(t) = —B; (gfg) . (23)

In order to compute the feedback law, we need the expression of the operator
B}

Let u € C" and z = (40‘(1-)> € Z. Then, taking in account the form of the

operator 7" in (14), we have

(u, Bhz) = (Bu, 2)p = (TBu, Tz) = < (DF;T) , ( Fqli ;q190>> .

And a simple computation gives
Biz=(B*D™*D™' + B*F*F)q+ B*F*G~ . (24)
Using the expressions (12) and (13) of F, we get

0

0
Fy== [ D a0)G o) =D [ Go)we)s,
1 21
where é(@) = A*(0)G'*, and then, putting Q = fo é(ﬁ)@*(&)dﬁ, we obtain

-1

0
F*F = /D—l*A*(a)Gl*GlA(e)Dldo =D QD .
-1
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Finally, with @(0) = C~2(9)G_1, the feedback may be written as

0
v(t) = —Bjz(t) = —B*D™" | (I + Q)D™y(t) — /@(9)%(9)@ - (29)

-1

Now let us analyze the condition (22). Among all the eigenvalues of :471) the
pure imaginary ones are (see Prop. 3.1)

Ne =log |u| + i(argu + 27k), k€ Z, (26)

for u € ) such that |u| = 1. For the corresponding eigenvectors gy = (e’\geg)’
k € Z, we have

0
Bigy = B*D™™* / Q(0)e* gdo
-1
* * L — —1 e M
dl (I — A_le Al) IZT‘,:k
=B*D ¥ .. G 1*G 1. (27)

©
% £ A\l 1e MM
dy (I — A*je™n)

An+AE

In (27) g is an eigenvector of A_; corresponding to eigenvalue u. This implies
that G~1*G~!g is an eigenvector of A*, corresponding to complex conjugate
eigenvalue fi. Indeed, taking in account (11), we get

(J*G'g,G7'g) = (G*A*,G "G 'g,G'g)
= (GG 'g,A1g)
= (G 'g,G'g). (28)

Since the adjoint operator J* is also a contraction then (28), with Cauchy-
Buniakovski inequality, yields J*G~'g = pG 'g. From this and (11) we get

A* |GG~ lg = iG~*G~'g. This fact and the observation that e N = i, /\_Z =
—X, k € Z allow to rewrite (27) as
1
)\1+)\",: dT
Bigy = B*D™"* o 9=DB"R}:(A+BR)g, (29)
syl

where Ry (Ag+BP{) = (Ag+BP{—\I)~"! is the resolvent of the matrix Ag+BPy.
With respect to formulas (25) and (29) the necessary and sufficient conditions of
the strong stabilizability for the system (10) take the following form:
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Theorem 4.1. System (10) is strongly stabilizable (with the aid of the of
bounded controls) iff there exists no eigenvector g of matrix A_q corresponding
to an eigenvalue p € >, |u| =1 and k € Z such that

B*Rju(Ao + BPg)g =0,
where )\’,: is given by (26). Under this condition a stabilizing control is given by
(25).

Remark 4.2. Let Py be a (r x n)-matriz and let A € C be such that \ ¢
o(Ay + BPY) U (Ay + BPy). Let us precise that

R} (4o + BF) — R}(Ao + BPy)
= R} (Ao + BPy)(P; — Py*)B*R} (Ao + BFy),
= R}(Ao + BF))(Fy — Py*)B* R} (Ao + BP).

From this identity one can easily conclude that for given pu,g, /\’,: the relation

B*R}u (Ao + BP)g = 0 holds if and only if B*R}.(Ao + BPRy)g = 0 for an
k k

arbitrary Py such that X ¢ o(A+ BF,).

The following theorem is the main result of the paper.

Theorem 4.3. Let a of the form system (2) satisfy the assumptions (al)—(a4).
Then this system is strongly stabilizable by a feedback control of class 2 if and only
if for an arbitrarily chosen matriz Py such that

(Ao + BPy) Nlog(D ) N (iR) =0

there does mot exists an eigenvector g of A_1 corresponding to an eigenvalue p €

> lul =1 and k € Z such that

B* R} (Ao + BP)g =0, (30)

where )\Z is given by (26). Under this condition the strong stabilization can by
achieved by the choice of control:

u= Pdx(t) + Plx(t — 1) + v,
where PY and P are defined in Sect. 8 and v is given by (25):

0

v=—BD" [ (I +Q)D ' (a(t) — A_ra(t — 1)) - / O(0)z(0)d0

-1
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P r o o f. Sufficiency follows directly from Theorem 4.1 and the Remark 4.2
to this theorem.
Let us prove the necessity. Assume that there exists a control u = P (gt(f_)))

of class 2 which strongly stabilizes system (3). This means that the operator
A = A+ BP with D(A) = D(A) is infinitesimal and the semigroup {e*}i>0
is strongly asymptotic stable. Then A= .AO + BP1, where BP; is an operator
bounded with respect to A. If (30) does not hold then (see Remark 4.2) there exist
an eigenvector g of A_; corresponding to an eigenvalue p € Y, |u|=1and k € Z
such that B* R}, (Ao + BPY)g = 0, This implies (see (29)) that the eigenvector

gx of .Al, ie. Algk = Xy gk belongs to Ker Bj..
Let us show that gy is an eigenvector of the operator (A9)%, adjoint of A in the
norm ||-||7, and the corresponding to gj eigenvalue of (.AO) equals )\2‘ = —X;. Let

f € D(AY) = D(A) and w € C. Then using the dissipativity of A? (see Prop. 3.2)
we have

0 > Re((A) = XD@k +wf), @ +wf))

> wRe (A} = M:Df,5c ), + lwRe (&) = MD)S, f)

Let us put w = a<(./zlv(1) — )\Z‘I)f,ffk>T, a € R. This leads to the inequality

o[(B - D83, | (1+aRe (A= NT) £,1)) <0
which holds for all « € R. From this follows that
(& - ND)f, §k>T — 0, for all f € D(A).
The later relation means that g € D((./Zlv(l))*T) and
(A5G = NG = — Gy

Since in addition
gr € Ker By, C Ker (BP1)7

then gj, € D(A%) and
Asge = (AD3Gk + (BP1)5Gk = — MGk

Hence
7 At\* ~ VTP
(e ) T gk =€ "k gk
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and, as a consequence,
Afe  ~ ~ N\ * ~ By
<6At9k,9k>T = <9k, (eAt)T9k>T = M| gg |7, > 0.

Thus, ~
e Gkllr > |lgrllr A0 as ¢t — +oo.

This contradiction completes the proof. ]

Remark 4.4. Assume that rank B = n. In this case one can easily observe
that assumptions (a3)—(a4) are satisfied automatically. Besides, the condition (30)
from Theorem 4.3 is also always satisfied. So any system (2) with rank B = n
and (al)—-(a2) is strongly stabilizable.

Example. Consider the following one-dimensional system
() =—z(t)+z(t—1)+z(t — 1)+ u(?). (31)

It is shown in [15] that this system is not exponentially stabilizable by a feedback
of class 2, because only a finite part of the spectrum of the closed loop system
can be moved to a semiplane {\ : Re(A) < a < 0}.

Now observe that (31) is strongly stabilizable due to Theorem 4.3. In fact,
for this system we have n =1,4g=—-1,A1 = A 1 =1,B=1,) = {1} which is
a simple eigenvalue. Since rank B = 1 = n and (al)—(a2) are satisfied the (31) is
strongly stabilizable. Let us find a stabilizing control. Since A; + AgA_1 = 0 and
o(Ap) = {—1} is real negative we can put P = P? = 0. Some simple calculations
give

G=1, D=1, (Fg))=—-(1—-e) e

1 /e+1 ~ e

and, therefore,

Thus, a stabilizing control from Theorem 4.3 for system (31) takes the form

0
/e_ea:(t + 6)do.

w(t) = — (1 4 led 1) (@(t) — 2t — 1)) —

2e—1 e—1

5. Conclusion

For linear systems of neutral type we gave a characterization of a class of
strongly stabilizable systems by relatively bounded feedback laws. No derivative
of the state is needed in the feedback. The counterpart is that the stabilizability
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is not exponential. As a perspective, one can expect that this technique may be
used for more general systems with delay of neutral type, using the same infinite
dimensional abstract framework.
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