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We give a full geometrical description of local totally geodesic unit vector
field on Riemannian 2-manifold, considering the field as a local imbedding
of the manifold into its unit tangent bundle with the Sasaki metric.

Introduction

Let (M, g) be an (n + 1)-dimensional Riemannian manifold with metric g. A
vector field £ on it is called holonomic if ¢ is a field of normals of some family of
regular hypersurfaces in M and nonholonomic otherwise. The foundation of the
classical geometry of unit vector fields was proposed by A. Voss at the end of the
nineteenth century. The theory includes the Gaussian and the mean curvature of
a vector field and their generalizations (see [1]| for details).

Recently, the geometry of vector fields has been considered from another point
of view. Let T1 M be a unit tangent bundle of M endowed with the Sasaki metric
[14]. If £ is a unit vector field on M, then one may consider ¢ as a mapping
£€: M — T1'M. The image £(M) is a submanifold in 73 M with metric induced
from T1 M and one may apply the methods from the study of the geometry of
submanifolds to determine geometrical characteristics of a unit vector field. A unit
vector field ¢ is said to be minimal if {(M) is a minimal submanifold in 73 M.

A unit vector field on S? tangent to the fibers of the Hopf fibration S3 il) S?
is a unique unit vector field with globally minimal volume [10]. This result fails
in higher dimensions. A lower volume is achieved by a vector field with one
singular point, namely the inverse image under stereographic projection inverse
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image of a parallel vector field on E™ [13]. The lowest volume is reached for the
North-South vector field with two singular points.

A local approach to minimality of unit vector fields was developed in [6].
A number of examples of locally minimal unit vector fields was found [2-4, 6-
9, 11-13, 15-17] on various manifolds. In [18] the author presented an ezplicit
expression for the second fundamental form of (M) and found some examples of
vector fields with constant mean curvature. This expression is the key to solving
a problem about totally geodesic vector fields on a given Riemannian manifold.
Originally, the problem of a full description of all totally geodesic submanifolds
in the tangent (sphere) bundle of spaces of constant curvature was posed by
A. Borisenko in [5]. The totally geodesic vector fields form a special class of
such submanifolds. In [19] this problem was solved in the case of 2-manifolds of
constant curvature. In [21] an example of a totally geodesic unit vector field was
found on a surface of revolution with nonconstant but sign-preserving Gaussian
curvature.

In this paper, we completely determine the Riemannian 2-manifolds which
admit a unit vector field £ such that (M) is a totally geodesic submanifold in
T1 M. Moreover, we explicitly determine the vector field. Under some restrictions,
we find an isometric immersion of the metric into Euclidean 3-space which gives
a surface with the necessary properties.

1. The main result

Let ¢ be a unit vector field on a Riemannian manifold (M", g). Then £ can be
considered as a mapping £ : M™ — T1 M™. In this way one can use geometrical
properties of the submanifold £(M™) to determine the geometrical characteristics
of the vector field.

Definition 1.1. A unit vector field on Riemannian manifold M™ is said to be
totally geodesic, if the submanifold E(M™) C Ty M™ is totally geodesic in the unit
tangent bundle with the Sasaki metric.

Definition 1.2. A point g € M™ is said to be stationary for the vector field &
if Vx&lqg =0 for all X € T,M".

If stationary points fills a domain D C M™, then locally M™ = M™% x E*,
where E* is a Euclidean factor of dimension k& > 1. In the case n = 2, the manifold
is then flat in D. If the manifold is of sign-preserving Gaussian curvature, then
we can always restrict our considerations to the domain with no stationary points
of a given unit vector field. The main result of the paper is the following theorem.

Theorem 1.1. Let M? be a Riemannian manifold with sign-preserving Gaus-
sian curvature K. Then , on some open subset U of M, there exists a unit totally
geodesic vector field & if and only if:
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(a) the metric g on U is locally of the form
ds* = du® + sin® a(u) dv?,

d 1
where a(u) solves the differential equation &, 4 + ;
du cos a

(b) the totally geodesic unit vector field £ is of the form

& = cos(av + wp) Oy + sin(av + wo)

sina(u)

where a,wy = const.

Rem ark. The Gaussian curvature K of the metric is
da
K=—.
du

(1)

Therefore, a(u) is the total curvature of the manifold along the meridian of
the metric. The vector field is parallel along meridians and bends along parallels
with constant angle speed a with respect to the coordinate frame.

Proof. Let & bea given unit vector field on Riemannian manifold M™.
For dimension reasons, the kernel of the linear operator Vx¢ : TM™ — ¢+ is not
empty. Therefore, there is a nonzero vector field ey such that V., ¢ = 0. In the
case n = 2, the field eg can be found explicitly. Denote by 1 a unit vector field
on M? which is orthogonal to &. Set

V{le‘”}a vnn:}ff,

where k and s are the signed geodesic curvatures of the integral trajectories of
the fields ¢ and 7 respectively. Introduce an orthonormal frame

k k
60:§5+X77, elzxé—gn, A= Vk?+ %2

The fields ey and e; are correctly defined on an open subset U C M? where
the field ¢ has no stationary points, i.e., points where A = (. Restrict ourselves
to this open part. It is elementary to check that

Ve =0, Ve &= An. (2)
Denote by w the angle function between £ and ey. Then

k= Asinw, 3 = Acosw, (3)
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and we can set

¢ =coswey +sinwer,
(4)

7 =Ssinweyg — coswej.

Denote by p and o the signed geodesic curvatures of the integral curves of
the fields ey and ey respectively. Then

Ve €0 =per, Ve el =oep.

In these terms, the second fundamental form of the submanifold {(M) C Th' M
can be expressed as [19]

Set )
cos(a/2) = ———.
(a/2) V1422
Then we have
A . 1— )2
W —s1n(a/2), ]_—{—AQ = COS &,
ey A _1
eo(A) = eos2(a)2)’ el (7\/14——)\2) =3 cos(/2) e1(a).

After these simplifications

o sina + ep(a) cos a
2 cos?(a/2)

—2u sin(a/2)

Q= .
2 | osina+ ep(a)cosa

2 cos?(a/2)

cos(a/2) e1 ()

Set © = 0. Then p = 0, since sin(«/2) = 0 implies A = 0, which contradicts
the hypothesis. Therefore, if a totally geodesic vector field exists, then the integral
trajectories of the field eq are geodesics.

Since cos(a/2) # 0, then

e1(a) = 0. (6)

Introduce a local semigeodesic coordinate system (u,v) such that

Oy = €g, Oy = f(u,v) ey,
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where f(u,v) is some nonzero function. Then the line element of M? can be
written as
ds® = du® + f?dv®.

The condition (6) implies dya = 0, which means that a = a(u).
Consider now the last condition

o sina + ep(a) cosa = 0.

If cosa = 0, then sina = 1 and hence 0 = 0. This means that ey is a parallel
vector field on M? and hence K = 0 again. Set

o tana + ep(a) = 0.

With respect to the chosen semigeodesic coordinate system, o = —3d,f/f and we
come to the following relation

U
—= = cot a Oya.

f

Because of (6), we have & = a(u) and the equation above has an evident solution
f(u,v) = C(v)sina,

where C(v) # 0 is a constant of integration. Making a v-parameter change one
can always set C'(v) = 1. Therefore, the line element of a 2-manifold M which
admits a totally geodesic vector unit field is necessarily of the form

ds? = du® + sin® a(u) dv?. (7)
Turn now to the vector field. A direct computation yields

Veo€ = Ve (cosweg + sinwer) = (—eg(w) — p) 7,
Ve, & = Ve, (cosweg +sinwer) = (—ei(w) +0)n

Since p = 0 and V,,& = 0, we see that 9,w = 0 and hence w = w(v). The second
equality means, that
—e1(w) + 0 = tan(/2).

With respect to a chosen coordinate system, we have
o= —cota Jy«
and hence

Oyw = sina (o — tan(a/2) = — cos a dya — 2sin®(a/2).
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The right hand side does not depend on the v-parameter and therefore 92,w = 0
which means that
w=av+wy, (a,wy= const).

As a consequence, we come to the following differential equation for the function

au):

cos a Oy + 2sin®(a/2) = —a
or equivalently
da a+1
—=1- . 8
du cos ®
The proof is complete. u

Remark. A direct computation shows that if « is a solution of (8), then
Gaussian curvature of the metric (7) takes the form (1). Since it is supposed that
K is sign-preserving, the relation (1) allows to choose « as a new parameter on
u-curves. With respect to the parameter o we have

do Cos

du

K~ atl—cosa
and the line element (7) takes the form

2
ds?® = (%) do? + sin® o dv?, 9)

Remark If¢isaunit vector field on the Riemannian manifold M™,
then the induced metric on ¢(M™) is d5? = gpdu’du® + (VZ{, Vk£>duidu’“. If &
is a totally geodesic vector field on M2, then the metric of M? has the standard
form (7) and Vg, & = Ve, & = 0, Vs,& = sinaVe, & = sinadn = 2sin?(a/2) n.
Thus, we have

d5? = du® + sin® a dv? + 4sin*(a/2)dv? = du® + 4sin?(a/2)dv.

Taking into account (1), we can easily find the Gaussian curvature of the totally
geodesic submanifold ¢(M?), namely

. 1
K= ZK(K —2cot(a/2)K}),

where K (c) is the Gaussian curvature of M? given by relations (1) and (8).
The equations (8) and (1) completely determine the class of Riemannian
2-dimensional manifolds admitting a totally geodesic unit vector field.
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Proposition 1.1. Let M? be a Riemannian manifold with a line element of
the form
ds® = du® + sin® a(u)dv?.

d
Denote by K the Gaussian curvature of M?. Then K = ﬁ if and only if the func-

tion a(u) satisfies
da m
gy :
du cos

m = const.

Proof. The sufficient part is already proved. Suppose now that

da
=K (#0).
u
Then we have )
o =K-= _76uu.(sma) = (/)% — cota o,
sin a
all
Therefore, o' = —o/(1 —d/)tana, or — T = o' tana, or
a J—
(In|e’ = 1)) = —=(In|cos al)'.
Evidently, now o/ — 1| = | [m] | where m = const is a constant of integration.
COS (v
d
Finally, — =1+ ——. "
du cos &

Corollary 1.1. Let M? be a Riemannian manifold of constant curvature ¢ # 0.
Then M? admits a totally geodesic unit vector field if and only if c = 1. This vector
field is parallel along meridians and moves along parallels with unit angle speed.

Proof If K =c¢ = const, then (1) can be satisfied if and only if
c=1a=-1. [ |

The equation (1) implies an elementary nonexistence result.

Corollary 1.2. Let M? be a Riemannian manifold with Gaussian curvature K.
Then M? does not admit a totally geodesic unit vector field & with angle speed a
if | K =1 <|a+1].

. a+1
Proof. Indeed, one can easily see that cosa = & Ifla+1| > |K —1],

then we come to a contradiction. ]
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2. Integral trajectories of the totally geodesic vector field

The integral trajectories of the totally geodesic vector field £ can be found
easily as follows. Let v = {u(s),v(s)} be an integral trajectory. Since

. sinw
& =coswey+sinwe; = cosw Oy + —— 0O,
sin «
we can set .
du dv sinw
— = COSWw, — = —
ds ' ds sina
and then

U .
— = cotwsina.
dv

Since @ = a(u) and w = av+wy, we come to the equation with separable variables

- = cot wdwv.
sin o
Using (8), we can find
du . cos
doe —a—14cosa

and make a parameter change in the left hand side of the equation above. Then
we come to the equation

cos o do
= cot w dv.

sina(—a — 1+ cos a)

Taking primitives, we have

tan(a/2) sin(av + wg) = c(a + (a + 2) tanz(a/2))% for a #0,—2,

tan(a/2) sin(—2v + wp) = cea tan’(@/2) for a = -2,
% tanwp (%—I—lnham(a/?)‘) =v—c for a =0.

Taking into account (3), we remark that tan(c/2) sinw = k and tan?(«/2) = k2 +
2. Therefore, we have an intrinsic equation on the integral curves of the totally
geodesic vector field

a+l
k=cla+ (a+2)(k* + »?)] =+ for a # 0,2,
k= ces®+7) for a = -2,
k = sinwy exp [2 cotwp(v —¢) — %H,;ﬁ‘;’;z} for a =0,
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where c is a constant of integration.
Moreover, in any case

&(k) = coswdyftan(a/2)sinw] + Yo, [tan(a/2) sin w]
sin o
coswsinwal, asinwcoswtan(a/2) coswsinw , ,
g 2 + . - 2 (au + a’)'
2 cos?(a/2) sin a 2 cos?(a/2)

The equation (8) yields

e(py - (ot Deoswsing (1 1 )

2 cos?(a/2)  cosa

Thus, if a = —1, then the integral trajectories of the field £ form a family of
circles. The metric of M? is

ds? = du® + sin® u dv?,
and we are dealing with the unit sphere parameterized by
r = {sinucosv,sinusinv,cos u}

These circles satisfy
tan(u/2) sinv = c. (10)

Let (p,¢) be polar coordinates in a Cartesian plane which passes through
the center of the sphere such that (0,0,1) is the north pole on the sphere. Then
the paramesters (p, p) and (u,v) are connected via stereographic projection from
the south pole as

p = tan(u/2),

Y =w.
Therefore, the equation (10) defines a family of parallel straight lines on the Carte-
sian plane. The family of integral curves of a totally geodesic vector field on the
unit sphere can be obtained as inverse images under stereogrphic projection of this
family.

An explicit equation of this family is

2csinvcosv  2¢sin’v 2 —sin’v
r(v) = ;

2 +sin?v "2 +sinv’ ¢ +sinv
where ¢ is the geodesic curvature of the corresponding circle. All of these circles
pass through the south pole (0,0, —1) when v = 0,7. We can find this by using
the expression tan(u/2) = ¢/sinv and trigonometric expressions for sinu and
cosu via tan(u/2).
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The unit sphere is not the unique surface that realizes the metric (9). Let
(z,y, z) be standard Cartesian coordinates in E3. We can find an isometric im-
mersion of the metric (9) into E® in a class of a surfaces of revolution. To do this,

set
z(a) = sina,

2
N2 ro Ccos «
(za)” + (2a)” = (a +1-— cosa) ’
and we easily find
z(a) = sina,

o

cost
= | ——+/1— 1-— )2 dt
#(e) /a—l—l—cost\/ (a 41— cost)® dt,

g
where the interval of integration is limited by the restrictions

l1+a<cosa<2+a, a<cosa<l+a,
or
—2<a< -1, -1<a<0.

The restrictions mean that if |a + 1| > 1, then the metric (9) does not admit
an isometric immersion into E® in a class of surfaces of revolution.
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