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Absolutely continuous measures on the unit circle
with sparse Verblunsky coefficients

Leonid Golinskii

Mathematical Division, B. Verkin Institute for Low Temperature Physics and Engineering
National Academy of Sciences of Ukraine
47 Lenin Ave., Kharkov, 61108, Ukraine

E-mail:golinskii@ilt.kharkov.ua
Received January 12, 2004

Orthogonal polynomials and measures on the unit circle are fully deter-
mined by their Verblunsky coefficients through the Szeg6 recurrences. We
study measures p from the Szegé class whose Verblunsky coefficients vanish
off a sequence of positive integers with exponentially growing gaps. All such
measures turn out to be absolutely continuous on the circle. We also gather
some information about the density function y'.

To Iossif Viadimirovich Ostrovskii on the occasion of his 70-th birthday

1. Introduction

Given a probability measure p on the unit circle T = {|{| = 1} with infinite
support, supp p, the polynomials ¢, (2) = ¢n (1, 2) = kn()2™ + . .., orthonormal
on T with respect to u are uniquely determined by the conditions k, = K, (u) > 0
and

def
/QDR(C)QOM(C) dp = Jn,ma n,m € Zy = {0, 1,.. } (1)
T
The monic orthogonal polynomials ®,, are ®,(2) = @y, (1, 2) = K, on = 2" +....

The numbers o, def —®,41(0), n € Z4, known as the Verblunsky coefficients,
define completely both orthonormal and monic orthogonal polynomials.
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Sparse Verblunsky coefficients

Let p = p'dm+ ps be the Lebesgue decomposition with respect to the normal-
ized Lebesgue measure dm on T. One of the highlights of the theory of orthogonal
polynomials on the unit circle — Geronimus’ theorem — states that

o
logp' € ! Z log|? < 0. (2)

k=0
The measures with property (2) constitute the Szeg6 class. It is crystal-clear from
(2) that {a,} € £2 makes no effect on the singular component p; of the measure p.
The situation changes substantially when we deal with certain subclasses of
the Szegé class. One of them, the measures with sparse Verblunsky coefficients,

is the main object under investigation in the present paper.

Let A 9 {n1 < mng2 < ...} be a sequence of positive integers with the
Hadamard gaps

A= deg A % inf MAFL 5 g, (3)
kK Nk

The Verblunsky coefficients {ay, } are said to be sparse if
o, =0, né¢A (4)

for some A (3). The main result of the paper claimes that measures from the
Szegl class with sparse Verblunsky coefficients are absolutely continuous. In other
words, (2) coupled with (4) suppress the singular component of p.

The Nikishin—Priifer variables and equations for them play a crucial role
throughout the whole paper. In [7] E.M. Nikishin came up with the idea to study
the interplay between absolute value and argument of orthogonal polynomials on
the circle (see also [6]). The name Priifer is related to a long and rich history of
continuum and discrete Schrodinger operators, where the similar variables arise
naturally. B. Simon [8] made this idea explicit and suggested the corresponding
equations for the real Verblunsky coefficients (symmetric measures on T), the case
which arises in regard with the spectral theory of Jacobi matrices. We derive the
Nikishin—Priifer equations for general measures and also prove Nikishin’s inequal-
ity and some of its consequences in Section 2. The sparse Verblunsky coefficients
are studied in Sections 3 and 4.

Our work was obviously very strongly influenced and inspired by a lovely paper
[5], wherein the Schrédinger operators with sparse potentials are examined. The
similarity of methods is quite conspicuous. The only difference is that we were
able to prove absolute continuity on the whole unit circle and also gather some
information about the density p’. On the other hand, Theorem 1.7 from [5] is
much stronger in a sense that it can manage sparse potentials off 2 (the measure
turns out to be pure singular). At the moment we can only conjecture that the
similar result holds in the unit circle setting as well.*

* This conjecture is proved in the book [11].
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2. Nikishin—Priifer variables and equations

For the monic orthogonal polynomials ®,, we write for n € Z

3,(¢) = Ry(Q)e™ D, R,y(C) = |®n(Q)], ¢ =¢Y,

with A\g = 0. The value A, is only determined mod (27), that will be fixed
later on. As all zeros of ®, lie inside the disk I, by the Argument Principle
An(27) — A\ (0) = 27n. It seems reasonable to introduce

9n Ent— M), 9n(21) =0n(0), P =0.

The values {R,,, Y, } are called the Nikishin—Priifer variables.
For x-reversed polynomials we have

®;(¢) = ("®n(C) = Ra(()e 1,
() _ iOn ()= (1)) _ gi(nt—20,(1))

97(¢)
It follows from the Szegs recurrences for @} |9, Theorem 11.4.2| that
9711(0) _ Rns1(Q) 4 - %, (¢)
n+1 _ in4 {(Fnt1(8)—9n(t)) _ 1 n —
= e =1+ (o, =1+ w,(t), 5
%) Ba0) T 0 ©

where .
wn(t) = anezwn(t)’ wn(t) = (n + l)t - 219“(7:)’
which gives
Rn-f—l(C)
Ry (C)

and so cos(¥p4+1 — ¥y,) > 0. The ambiguity in 9 can now be fixed by demanding

cos(In+1(t) —In(t)) = 1+ Rwy, >0

s
5"
As a matter of fact, taking an imaginary part in (5) gives

Rn(C)
Rn—|—1(C)

[In41(2) — In(t)] <

|$w (t)| . |%wn(t)| |an|
n

[sin(Fp4+1(t) — In(2))] = M4 we(t)] T 1-Q°

so that

[ (8) — ()] < 512 Q

The above formulae assembled together lead to two equalities which will be
referred to as the Nikishin—Priifer equations
RY
R

O

=1+ w,|* = 1+Ianl2+2§R{aneiw"‘t)}, (7)
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Sparse Verblunsky coefficients

2
2O ()=0n() _ (L wn)" 1+ 2wy +wy,

4w 11+ wy|?

€

(8)

We are now within an easy reach from the Nikishin inequality |7, Theorem 1].
Indeed,

n—1

log |Rn(¢)| = R log (1 4 w)
k=0

and since |log(1 + z) — 2| < |2|2(1 — |z]) ! for |z] < 1, we see that

n—1 ®
iwp (t
kg_oﬂ? {ake }

One of the conclusions we can draw from (9) is the following

[log |®n (€)]] <

1 n—1 )
+ -0 g o |~ 9)

Theorem 1. Let a = {a,} € P for some 1 < p < 2 and q be a conjugate
exponent. Then

2r I q/p
1 it) | |9 q P
or [ ogla ()|t <cqllalg Y- SlasPy  +1. (10
In particular, if
© o a/p
Z Z |l [P < 00 (11)
k=0 | j=k
then log u' € LI(T).
Proof. Put
. m . . .
Br(e™) = etV et = g —
Jj=k

(the latter series converges a.e.). The Abel transformation gives

n—1 n—1
Z akeiwk(t) — Z (ﬁk (eit) o ﬁk+1(eit)) efQiﬂk(t)
k=0 k=0
n—1
= Z ﬁk(eit) (e‘Qiﬁk(t) _ e—Ziﬂk—l(t)) + By — aneiwn(t)
k=1
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and so by (6)

n—1 n—1
> e D <2 B ()] [94(8) — Dr—1(B)] + [Bo| + |l
k=0 k=1
- n—1 )
< ST UBule)] o | + el o] = 1.
1-Q=

Nikishin’s inequality (9) along with the Holder inequality imply

n—1 q
[log |2 (C)]|* < C* ({Z |Br(e™)] |alc—1|} + 1)

k=0
q/p p_1

n—1
<o {Zmnp} > 1Br(e™)|* +1
k=0 k=0

so that
1 2w 1 27rn_1
py / ‘log ‘@n (eit)Hq dt < Cq||a||g%/z |,3k (eit)|q dt + C1.
0 o k=0

According to the Hausdorff-Young theorem [10]

. 2m o a/p
[ ErasiSerl
0 r=j

which gives (10).

Next, under (11) the sequence {log |py|} is bounded in L4(T). On the other
hand, by [4, Theorem 2.5] log |¢,| 2 converges to logx’ in L, and so the Fatou
lemma does the rest. n

For instance, (11) is true as long as

e e]
Zns|an|p<oo, s>p—1:2—9.
n=1 q

Another consequence of Nikishin’s inequality provides a uniform bound
llog |®,|| = O(1), n — oo, for monic orthogonal polynomials from the Szegé class

whenever
o0

Z |11 (e")] < 0. (12)
k=0
Hence, if (12) holds on a closed arc A, then by [3] the measure p is absolutely
continuous on this arc.
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3. Bounds for derivatives of the angular variable

We refer to 9, as the angular variable. By differentiating (8) with respect to
t and using

wh(t) =n+1-—29. (), (13)
we come to
1— |og|? Ry, (1) + | |2
rq () = 9L () ug + vp, Up = ——— . y,=(n+1)—2L "L
n1(t) = On(E)un + on U w) " (1) 11+ wn ()]
14)
The coefficients uy,, v, satisfy
1-Q
0< ——=<u <1,  [|og| <2(k+1)|ewl. (15)

1+@Q

Lemma 2. For an arbitrary measure p with the Verblunsky coefficients o, we
have

o (t <2Z (k+1)|og|, nezZ,. (16)

Proof. Therelation (14) is the first order linear difference equation, which
can be easily solved explicitly

d f
Up19h 11 (t) = Up9y () + Ups10n, = H u

and since 9f = 0 we see that

! Uk—i—l
n—|—1 .

h— n +1

But

Uk+1
kt H w <1
S . k+1

and (15) yields (16). [ |

From now on we will focus on sparse Verblunsky coefficients (3)—(4). By C we
always denote positive constants which depend on «,, (and so on A) whose value
can vary from one equation to the next.
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Lemma 3. For any sequence of sparse parameters (3)—(4) we have

(] < Cngy Jun, ] <Onyy jEN, (17)
and
9 ( ‘ < Can |tn, | < O, (18)
k=1
Proof Itis clear that now
unj_,_l = unj+2 =...= ’ll,nj+1_1 = 1, 'Unj—i—l = 'Unj—l—Z = ... = Unj+1—1 =0
and
) = () = =0 (1), (19)

In our case (16) has the form

j
‘ Z ng +1) o, |,
k=1

and hence

ik 4\
n 41 ‘ < 4n; Z |ank| < 4n]Z ( ) lag, | < o

which is the first inequality in (17). The second one follows now from (13).
The repeated differentiation of (14) leads to

2.y
ne1 = Unun + S, sn = (wp,)” R(iwn ) un.

By (17) ‘snj ‘ < Cn? ‘anj ‘, and the same sort of argument (with the only difference
that now n =n; € A) gives (18). |

Under certain restrictions on «, relation (17) can be refined as follows.

Lemma 4. Let in the premises of the above lemma lim,,_,o o, = 0. Then

9 (1)

n

lim max
neA t

‘ = 0. (20)
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Proof Write (14) as

nt1(t) = In(t) = 0 (t) (un — 1) + vn,
9! 9

which implies |9, i1 n; < Cn; |anj| or

J
k=1

o (¢ o' J
- s } o1
njy1 njyi| i nin

It is fairly easy to make sure that the sum in (21) goes to zero as long as «,, does
(for Hadamard sequences (3)), that proves (20).

[
Note that (20) can be expressed as
iien/{ max w;;ft) — 1‘ =0,
which means that 1
W) > ng G o (22)

4. Sparse Verblunsky coefficients from the Szego class

Let us turn to the first Nikishin—Priifer equation (7) written in the form

J
log R, (¢) =log Ry, (¢) + Y log 1+ wn, (1)
k=1
and differentiate it with respect to ¢

! R (iwy,, )
log Ry, (0)) = (log R, (0)' + 5
( s ) ( Z |1 + 'wnk( )l
whence it follows from (22) that

(os 2., 0) | <c (1 P |ank|) . (23)
k=1

Theorem 5. Let a = {an} be a sparse sequence (3)—(4) of the Verblunsky
coefficients from the Szegd class. Then for each closed interval I C (0,27) and
reN

sup/ ‘@n(eit)fr dt < oo. (24)
n
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Proof It suffices to prove (24) for n € A. Let g € C, be an infinitely
differentiable function on [0, 2] such that 0 < ¢<1,g=1on I and g = 0 near
the endpoints. Then

2T
/ |y, ()| dt = / Ry (e")dt < / R (eM)g(t) dt = E;.

By (7)
R¥ (¢)= R?LS(C) (1 + 2rRwy, (t) + O(aij))

nj+1

and so

2
B = (140(3)) B +2r / R () g(t) R, (1) dt.
0
Let us focus on the latter integral
27 27
Fj = Rap, /Ri’; g cos wp; dt — S, /R,%;ﬁ gsinwp; dt = Ray, - Fj1 — Sap, - Fj.
0 0

The key tool in what follows is integration by parts. Since g = 0 near the end-

points, we have
27 d
1
Fiji = — [ sinwp, — | R g —

0

which consists of three terms. The first one is

2 .
(1 _ 2 S1N W,
0 i

It is clear form (7) that

j—1
Ri’; < Cexp {ZTZ |ank\}

k=1

and by (22) for j > j

# < 2e~ 108" « CemIlog A,
n;
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Next, a, — 0 implies 2r Zi:l lam, | < 25 log A for j > ji and hence

‘Fj(ll)‘ < Cexp{—log/\j}.

The second term is

2w . 27 .
SN Wy, . SN Wy, .
Fj(f> — o / Ry~ (Rn,;) g ——L dt = 2r / Ry (log Ry,;) g — 2 dt.
0 wnj 0 wnj

Now (23) and (22) give

E. J
F@)‘<C—J 1 .
] < oS el

As for the third term, the bound for the second derivative of the angular
variable comes in

27
Wy
F](f) = /R,%: gsinwp; S—— 5 | dt
0 (w;lj>
and by (18)
3) '}
‘Fjl ‘ < CEjZ — lan] -
n4
So we end up with

1 J ng J 7’L2 .
|Fj1| < CE; {; + D longl + D% lam,| ¢ + Cexp(=C3).
7o k=1 k=1

Clearly, the same inequality holds for Fj2 as well, and we complete with the bound

Ej <(1+ O(aik) +B;) Ej + Cexp(=Cj),

1 J ng n%
Bi = |an,| {n—j+2 (n_j+ﬁ oy | ¢ -
k=1 J

It is shown in [5, Lemma 5.3] that for Hadamard sequences (3)

) oo )
ZIBJ < CZ |anj| )
j=1 j=1

which yields E; = O(1), j — oo, as claimed. ]
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We are in a position now to prove the main result of the paper.

Theorem 6. Let a« = {ay,} be a sparse sequence (3)—(4) of the Verblunsky
coefficients of a measure u from the Szegd class. Then u is absolutely continuous
on T. Furthermore, for each closed arc T' C T\{1} and p > 0 we have (u')*' €
LP(T).

Proof We can apply Theorem 5 to both polynomials ®, and ¥,, of the
first and second kind to get in addition to (24)

sup/ ‘\Iln(eit)‘zr dt < oo.
n

Hence the same is true for the norm of transfer matrices [2]

sup/ 1Ta(Q)|Z" dm < oo,

where T' is a closed arc in T\{1} and dm is the normalized Lebesgue measure
on T.

In view of [2, Theorem 15| the measure y is absolutely continuous on T\{1}
and it remains only to rule out the possibility of a masspoint at { = 1.

We proceed along the line of [1] and write

0 n—1 0
Z exp {—22 |ak|} = Z Njt1 — nj) exp{ 22 |ank|}
k=0 j=1

n=ni
By Schwarz’s inequality
J 2 J def 0
. . €
(z |ank|> <Y lamlP<CY, P S oy
k=1 k=1 k=1
so that
o0 o0 ]
Z Njt1 — N exp{ 22 |ank|} > Z Njy1 —nj)e _20‘6.
j=1 = j=1

By [1, Theorem 6] the corresponding measure y has no mass points on T, as
needed.
As for the second statement, note that |®,¥,| > C > 0 for all n gives

“1)71'727- S 0727" |\Pn‘2r
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and so (24) is actually true for all integer r. Next, within the Szegs class the
relation

. -2 !

lim || ™" = p

kEA

holds a.e. on T for some subsequence A C N. The result now drops out immedi-
ately from the Fatou lemma. [

R e m a r k. The absolute continuity of the measure on the whole circle
can be proved by using the rotation p., of the original measure and taking into
account that its Verblunsky coefficients ay,(y) = €™y, are also sparse with the
same gaps, so both 4 and p. are absolutely continuous on T\{1}.

Much the same method can be implemented in a slightly more general situation
when clusters of nonzero parameters are allowed.

Theorem 7. Let
A= U[nk,nk+mk], ng + myg < Ngy1
k>1
be a sequence of positive integers which satisfies the following conditions
(i) mg = O(1), k — oo;
(ii) infg ngii/ng > 1.
Suppose that the Verblunsky coefficients of a measure p are all zeros off A. Then

i 1s absolutely continuous.
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