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We investigate power series with positive coefficients having sections with
only real zeros. For an entire function f(z) = Y pe,ar2®, ar > 0, we de-

2
note by g,(f) = a:’_‘;;n, n > 2. The following problem remains open:
which entire function with positive coefficients and sections with only real
zeros has the minimal possible liminf,, . ¢,(f)? We prove that the ex-
tremal function in the class of such entire functions with additional condi-
tion 3limy, o ¢n(f) is the function of the form f,(2) :== > 2, k'ZT We

answer also the following questions: for which a do the function f,(z) and
the function y,(2) := 1+ Y o, (a’“fl)(ak—zlkfl)---(afl) ,a > 1, have sections

with only real zeros?

To lossif Vladimirovich Ostrovskii on the occasion of his 70-th birthday

1. Introduction and statement of results

There are many papers concerning the zero distribution of sections (and tails)
of power series, see for example a very interesting survey of the topic in [8]. In
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this paper we investigate power series with nonnegative coefficients having sections
with only real zeros.

By R* we will denote the set of real polynomials having only real zeros.
The following fact was mentioned by Pélya in [10]:

Theorem A. Let P(z) =ap+aiz+...+a2" €R*, a; >0, j=0,1,...,n
and n > 2. Then

ap—1 2n ap—o (1)
an n—1 an_1
Let
o
Zakzk, ar >0 for k € NU{0}, (2)
k=0

be a formal power series and let

Sn(2) =Y axz*, n e NU{0} (3)
k=0

be its sections.
The following theorem is a corollary of Theorem A.

Theorem B. Let the formal power series (2) have the property: AN € N :
Vn > N S, € R*. Then this series is absolutely convergent in C, i.e., its sum is
an entire function.

We will consider three classes of entire functions:

S* = {f(z) — ZEO:O a,kzk L ag > O, Vk, a{nk} C N, ng — oQ, SuCh that
VEeEN S, € R*};
A* = {f(z) =3 a2k rap >0, Vk; AN =N(f)eN, Vn> N S, € R*};

B* .= {f(z) =Y oarz® 1 ap >0, Vk; VneN S, € R*}.
Obviously, B* C A* C §*. We need also two notations:

an—1 p Ap—
pn:pn(f):: - , n>1; QnZQn(f):: t = n-l , > 2. (4)
an Pn—-1 an—20n
Note that
a a a\" !
anzio,nzl; an = =3 n_21 5 (—1) , n>2. (5
P1P2 - -Pn 9y g3 " ---Qp_1Gn \ X0
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Using these notations and Theorem A, we can state

f(2) =) arz* € A" = gu(f) 22, ¥n > N(f). (6)
k=0

In 1926, Hutchinson [5, p. 327] extended the work of Petrovitch [9] and Hardy [3]
or [4, p. 95-100 | and proved the following theorem.

Theorem C. Let f(z) = > 1oy ap?®, ap >0, Vk. Inequality q,(f) > 4,
Vn > 2 holds if and only if the following two properties hold:

(i) the zeros of f are all real, simple and negative and

(i) the zeros of any polynomial S p_. axz*, formed by taking any number of
consecutive terms of f, are all real and nonpositive.

For some extensions of Hutchinson’s results see, for example, [1, §4]. The fol-
lowing statement is a corollary of Theorem C.

Theorem D. Let f(z) = Y po ap?®, ap > 0, Vk, and g,(f) > 4, VYn > 2.
Then f € B*.

We obtain from (6) that for every f € A*

liminf g, (f) > 2. (7)

n—oo

In [6] it is proved that the constant 2 in (7) can be increased and the constant 4
can not be decreased even in the statement

an(f) >4Vn>2= f e 5"

Theorem E. Let f(2) = Y o0 arz® € A*. Then liminf, o0 g, (f) > 1+ V3.

R em ar k. Using the same method as in the proof of Theorem E after
cumbersome calculations, we can prove that

o0
flz)= kz:_oakzk cA* = linrr_l)ioréfqn(f) > 2.9.

Theorem F. For every ¢ > 0 there exists f-(z) = Y poqar(e)2® such that
VEe NU{0} ar(e) >0 andVn >2 q,(f:) >4 —¢€ but fo ¢ S*.

In connection with the above mentioned theorems it is natural to investigate
the function

9a(2) ::Z? , a>1, (8)
k=0
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with the property g,(gs) = a? for all n > 2. In [4, p. 95-100] it is shown that
ga(z) has only real zeros if a2 > 9. In [14, Problem 176, p. 66] it is proved that
da(z) has only real zeros if a? > 4. The question about the smallest value of a for
which g,(z) has only real zeros was discussed by T. Craven and G. Csordas in [2].
T. Craven and G. Csordas have improved the method of [14, Problem 176, p. 66]
and have shown that a? > 3.4225 is enough see [2, Examples 4.10,4.11]. In [6] it
is given the answer to the question: for which a does the function g,(z) have only
real zeros?

Theorem G. There ezists a constant goo (goo ~ 3.23) such that:

1. Sop+1(2,94) == Z?Iﬂ;l CZ—JQ € R* for every k € N & a2 > qoo;

2. 3Ng €N VE> Ny So(z,9a) = 32, aj—”z ER & a®> qu;

3. ga(2) has only real zeros < a? > goo-

In [6] it is noted also that

Sok(z,94) € R* =VYm >k Sopm(z,a) € RY; (9)
52k+1(z,ga) € R = Vm <k 52m+1 (z,a) € R (10)

and
Sn(z,9q4) € R & 3z, € [a,a3] 1 Sn(—%n,g94) < 0. (11)

Using Theorem D and considering S3(z,ga4), it is easy to see that g,(z) € B* &
a? > 4.

The question about the sharp constant in Theorem E is open. Theorem G
shows that this sharp constant is less than or equal to guc-

Definition 1. A sequence {vx}3>, of real numbers is called a multiplier se-
quence if, whenever the real polynomial P(z) = Y p_, axz® € R*, the polynomial
> ro yearz® € R*. The class of multiplier sequences we will denote by MS.

The following famous theorem by G. Pélya and J. Schur gives the complete
characterization of multiplier sequences:

Theorem H (see [13], [12]| or |7, Ch. VIII, Sect. 3|). A sequence {yx}3>, s
a multiplier sequence if and only if the power series ®(z) ==Y 72 o %zk converges
absolutely in the whole complex plane and the entire function ®(z) or the entire
function ®(—z) admit the representation

o0
Ce?*z™ H(l + Iik), (12)
k=1

where C € R,0 > 0,m € NU{0},0 < z < o0, Zzoﬂﬁ < oo
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The simple consequence of Theorem H is that the sequence {vp,v1,...,7%,0,0,...}
is a multiplier sequence if and only if the polynomial P(z) = ch:o %i!zk has only
real zeros of the same sign.

For a real polynomial P we will denote by Z.(P) the number of nonreal zeros
of P, counting multiplicities.

Definition 2. A sequence {y4}3>, of real numbers is said to be a complex
zero decreasing sequence if

n n
Z(>  mwarz®) < Z.0) " arz"), (13)
k=0 k=0

for any real polynomial 37 _, arz*. We will denote the class of complex zero de-
k=0
creasing sequences by CZDS.

Obviously, CZDS C MS. The existence of nontrivial CZDS sequences is
a consequence of the following remarkable theorem proved by Laguerre and ex-
tended by Pélya (see [11] or [12, p. 314-321]).

Theorem 1. Suppose an entire function f(z) can be expressed in the form

o
f(z) = Czme o+ T (1 + e 7, (14)
k=1 Tk

where m € NU{0}, C, BER, >0 and 0 < z < oo, 2130:1%2 < 0o. Then
k
the sequence {f(k)}32, is a complex zero decreasing sequence.

As it follows from the above theorem,
1
{“_’“2}2‘;0 € CZDS, a>1, {H}]C;OZO € CZDS. (15)

Denote by
Qinf 1= flenj* hnn_lgéf an(f)-
Theorem G shows that go > ginf- The problem about the precise value of gjn¢
remains open, and this problem is of interest for the authors. It is also unknown
whether or not does there exist the "extremal function" in A*, namely such func-
tion finr € A* that liminfy, o0 ¢n(finf) = Gint-
In this paper we will investigate the function

0 k

z
fa(Z) = Z W, a > 1,

k=0

Matematicheskaya fizika, analiz, geometriya , 2004, v. 11, No. 4 453



Olga M. Katkova, Tatjana Lobova-Eisner, and Anna M. Vishnyakova

with the property

an(fa) = n 1a2 —a%, n— . (16)
n—

Since {a_’“2 1o € CZDS for a > 1, this sequence is a multiplier sequence.
Hence, by Theorem H, f,(z) has only real (and negative) zeros. We will answer
the following question: for which a does the function f,(z) have sections with
only real zeros?

Theorem 1.
fo€8* & fo € B* & a® > o,

where the constant qs was introduced in Theorem G.
To motivate this investigation we prove the following statement.

Theorem 2. Let f(z) € S*. If there exists lim, o0 qy(f) and qo :=
limy, o0 ¢ (f) then for every m € N we have Y ;" o (\/’L) > € R*.
The following statement is a corollary of Theorems 1 and 2.
Corollary. If f(z) € S* and Flimy 00 gn(f) then limpy 00 gn(f) > Goo-

Denote by L* = {f € S* : 3limy, o0 gn(f)}- Corollary shows that

inf lim ¢,(f) = goo

fEL* n—00

and the "extremal function" in the class L* is f,.. At the moment we do not
know whether or not the function f, is the "extremal function" in the class A*.
The following identity I.J. Schoenberg attributed to Gauss:

k

[Ta+ 5= 1+ i¢y~@—1y g>1. (7

k=1 k=1 (g* —1)(

k

@ D)

So the entire function y,(z) := 1+ > 5oy T
property

g > 1, with the

n

q
an(yq) = PP R

& 7 T4 oo, (18)

has only real zeros.
Prof. I.V. Ostrovskii posed the problem: for which g does the function y,(%)
have sections with only real zeros?

Theorem 3. 1. ¢> g = INgeEN Vn> Ny Sp(z,y4) € R*;
2. ¢<{goo=> INgeN Vn>Ny Su(z,y9) ¢ R"
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2. Proof of Theorem 1

The following identity

d 1 z
%Sn(za fa) = Esnfl(a_gafa)
shows that
Sn(zafa) €R" = Snfl(zafa) € R*a

or
fa €S" <~ f, € B

By Theorem G (1)

2k+1 Zj
Z a?ER* for every k€N <= a? > ¢oo.
=0

Since {77122, € CZDS (see (15)) and by (20) we obtain
a®> > g = f4 € B*.
It remains to prove that
faEA*:>a2ZQOo-
Note that since {a~*’ IR0 €CZDS, Va>1 (see (15)) we have
Sn(z, fa) € " =VYa>a Sy(z, f,) € R".
Let
kn :=inf{a > 1: Sy(z, fa) € R*}.

By (19) we have
ke <ks<ks<...,

and so
3 lim k&,.

n—0o0

(24)

Denote by koo = limy, o0 k- We know that ko < goo, and we are going to prove

that koo = goo-
We will consider polynomials

F,(z,a) := Sp(—2, fs) =

Obviously,
F.(z,a) € R* & S,(z, fa) € R".
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We will answer the following question: for which a do polynomials F,(z,a) have
only real zeros? We need the following Lemma.

Lemma 1. Suppose a®> > 3. Then 3ng € N Vn > ng polynomial F,(z,a)
has ezactly two roots in the domain {z : |z| > na®"~3}.

Proof of Lemmal. Wehave

Fu(za) = “ 2 S gm0

n! a®” klan—kghk®—n?"
k=o0

Denote by t := ”“;n. For |z| > na®~3 we have |t| < a3. We obtain for n > 4
_1)ngn b _1) =k
Fn(z,a) = gn—,a% ZZ:()(—l) " kl(ZnﬁW

_ (—1)’.‘ 2P 1y (n—1)! i
Gy (1) ol

- 2

n! a™ j=o n—j)! ni—1 ai?
_ (;'l)r;én <(1 _ % i %% _ (n—lr)b(zn—Z) Z_z + (n—l)(ny;?)(n—?:) atT46)
+ 30 (—1)7 _(n1)! (25)
j=5 (n—j) ni=1 42 )"

Further we need two lemmas from [6] concerning the polynomial Sy(—z,gqs)

=1- % + ;—i — 2—2 + a’% For the sake of completeness we will present the short

proofs of these lemmas.

Lemma 2. For a® > 3 the inequality holds

|S4(_a'3ei(paga)‘ > a’74a VQD € [Oa 271-]' (26)

Proof of Lemma2 Wehave

Si(—a3e, g,) = 1 — % + a2e?¥ — 31 4 g~ Lebiv

= _je3ip/2 ((2 sin(3¢/2) — 2a? sin(p/2)) + ia_465w/2) ; (27)
whence

[Sa(—a®e™, g2)” = 4 (sin(3p/2) — a” sin(ip/2))”
—4a"*sin(5¢/2) (sin(3p/2) — a®sin(p/2)) + a 8. (28)

After simple transformation we obtain

|S4(—aPei®, go)|> = 45in®(p/2) ((a® — 3) + 4sin?(p/2))”
+4a~*sin(5¢/2) sin(/2) ((a® — 3) + 4sin?(¢/2)) + a~8. (29)
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For a? > 3 and ¢ € [0, 27] (26) is a consequence of
sin(p/2) ((a® — 3) + 4sin®(p/2)) + a~*sin(5¢/2) > 0.
The last inequality follows from
4a* sin® /2 + sin(5p/2) > 0 (30)

for ¢ € [0,27]. If p € [0,27/5] U [87/5, 2], then sin(5¢p/2) > 0 and (30) holds. If
¢ € [2m/5,8w/5], then (30) follows from

4a*sin® /5 —1> 0,

that is true since sin® 7/5 > sin® /6 = 1/8.
Lemma 2 is proved.

Lemma 3. If a® > 3 then Si(—z,g4) has ezactly two zeros in {z : |z| < a3}
and has no zeros in {z : |z| = a3}.

Proof of Lemma3. Denote by Py(t) := Si(—a't,a) =1 —a®t +
a*t? — a3t® + t*. We are going to show that P,(t) has exactly two zeros in {t :
lt| < a'} (and exactly two zeros in {t : |[t| < a '}. ) Let w(t) := t + ¢ L.
The function w(t) maps conformally {¢ : [t| < a~!} on a domain € such that
{w:|w| >a+a"'} C Q. Wehave P,(t) = t?(w? —2—a3w+a*). Let us show that
Qu(w) := (w? — 2 — a®w + a*) has exactly two zeros in {w : |w| > a + a~'}. Let
wi,we be the zeros of Q,(z) and let D be the discriminant of Qu(z). If D < 0,
then |w;| > Re w; = “2—3 > 37‘1 >a+atforj=1,2.1f D> 0, then

a® —Vab —4a* + 8

|wj| > 5 >atal, j=1,2

So for a? > 3 the polynomial Q,(w) has exactly two zeros in {w : |w| > a+a~'}.
Therefore P,(t) has exactly two zeros in {t : |t| < a '} and has no zeros in the
boundary of this circle.

Lemma 3 is proved.

Let’s continue the proof of Lemma 1. Since

Qu(t,a) == (1L + n—1t> _ (n=1)(n=2) 3

n a? n?2 ad

NGRS IS I SN NP W (31)

and this limit is uniform on the compact sets, we have by Lemmas 2 and 3 and
Hurwitz theorem that

Ing Vn>ng Vo €[0,2n] |Qu(a®e™,a)| > za?, (32)

N =
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and Vn > ng polynomial Q4(t,a) has exactly two roots in the circle {¢ : [t| < a®}.
By (25) we have

EMJFijﬂmm@
+ Y (-1) (n—l)(n—z)_..l.(n—j+1)i) = EVZ (Qu(t,a) + T(t,a)).  (33)

ni ai’ n! an’
Since | i (@) - | ,
e o)l < 2, G < a2 0V = Gy
and L, ) )
2@ > a8 = 1)’ a® >3,

the statement of Lemma 1 follows.
Lemma 1 is proved.

Let us prove (23). Suppose f, € A* for some a? > 3. Then I ng € N Vn > ng
F,(z,a) € R*. By Lemma 1 3n; € N Vn > ng polynomial F,(z,a) has exactly
two roots in the domain {z : |z| > na?* 3}. Then for n > max(ng,n;) =: ng
3z, € (na®3,00) : Fu(zn,a) = 0. For £ > na®~! we have

2 n—1

e T < "
(n —1)! a(®=1)? = pnl gn*’

n

1<Z<
a  2a*

and so
z > na®" "t = F,(z,a) #0.

Thus, z, € (na®"3,na?"!). Let us fix any m € N. We have for n >
max(ng, 2m + 4)

— -1 _ \\n—2m k+n—1 =& n—2m-+1
O - (_1)77‘ Fn(xna a) - k=0 (_1) n ! ak2 + <(n_2mi1)! a(n72m+1)2
182_2 :Ez_l o T
T ('ﬂ*?)! a(”_2)2 + ('ﬂ*l)! a(n—1)2 ('ﬂ)' a(n)‘l) - (34)

. — — k .
For z,, € (na®3,na?~') summands in Y 7-2"(—1)k+" lkTmﬂk—z, are alternating
. . . . . . - - a
in sign and their moduli are increasing. So

n—2m CEk
_1)ktn-1_-"n
kzo ( ]‘) k‘ akz < 07
and by (34) we obtain
xn—2m+1 .’Bn_2
n —_— e s s — n
((n —2m + 1)! g(n-2m+1)? (n —2)! a(n-2)?
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PN S ) >0
(n—1)! a1 (n)! o’ '

Dividing this inequality by ﬁ and rewriting it from right to left, we

(n)!

obtain

1— wn;L a?r1 ¢ (nn 1) q2(2n=2) _ "(n_i%("_Z) a3(2n-3)
+eee n(n—l)--z-(n_—22m+3) o(2m—2)(2n—2m+2)
_n(nfl)sé-z-y(rln7712m+2) a(@m—1)(2n—2m+1) ~ (. (35)

Denote by y, = € (na® 3, na® ') we have y, € (a,a®). In this
notation we rewrite (35) in the form

1— yn + (n— )z_%_ _ (n— 17)1(2“' 2) yn +. (36)
— —2)... 2m 2 2m—1
+(n 1)(n n22)m_(gz 2m—|—3) ag;n_m? (n—1)(n n2)m (;z 2m+2) aiyz,:n_l)z <0.

Passing to the limit in this formula as n — oo, we obtain that there exists yg €
[a,a®] such that

Som—1(y0,9a) < 0.

By (11) it means
Som-1(2,94) € R*.

Since m is an arbitrary positive integer we obtain by Theorem G (1) that

a? > Goo-

Using (21) and (20), we conclude that

Vn € N Fy(z,a) € R* <= a® > qoo-

Theorem 1 is proved.

3. Proof of Theorem 2
Let us fix an arbitrary m € N. For ny > m we have

m
Shy, (z) € R = Sé:k ™) Z (g —m +j) ank*m+jxj € R
j=0 '
1

A, —
— §(ng—m) Mg —m )=14+2
(ng —m)lan,—m " ((n/c —m+ 1)an, —m+t1 )
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m . j—1
(ng—m+2)-(ng—m+3): - (ng—m+35) 1 Gny—m+jOn, _m *
+Z k ) - (ng :)[j—l (ng J)T' nkjmjnk ™ € R*.

j=2 (nk —m+ ) J: Uy —m+1

Using (5), we can rewrite the last polynomial in the form

o~ (g —m+2)-(ng—m+3)- - (npg—m+j) 1
% an—m+2(f)j_lan—m—f—?)(f)j_z vt Q'nk—m—f—j(f)) €K

Taking the limit as ny — oo, we obtain

and putting z = \/%, we have

S en
— = eR"
k! (\/q0)**

k=0
Theorem 2 is proved.

4. Proof of Theorem 3

The statement
¢§<goo=> INgEN Vn>Ny Su(z,yq) ¢ R*

in Theorem 3 is a simple consequence of the Corollary formulated after Theorems
2 and 1. Let us prove that

g>(goo = ANy €N Vn >Ny Sn(z,yq)ER*.

Denote by

T .’11'2

Sul@:q) = Sul=w,y0) =1= 73+ G-y 1) —

n

x
(" ="' =1)--(¢g—1)
Obviously, Sp(z,q) € R* & Sy(z,y,) € R*. We will investigate polynomials
Sn(z,q) for ¢ > goo. In this section we will use the following agreement: we mean
that the expression (¢/ —1)(¢~! —1)--- (¢ — 1) is equal to 1 when j =0

+(=1"
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We need the following two lemmas.

Lemma 4. Suppose q > 3. There exist nonnegative numbers 0 = &y < & <
€o < ... < &p—2, such that:

(i) —1<& <™ -1

(i) (—1)?Sn(&,9) > 0.

Proof of Lemmad. Put§ = /(¢ -1)(¢ —1),5 = 1,2,....
Obviously, (i) holds. For j = 3,4,...,n — 3 we have

. &
(_1)J Sn (fja Q) =~ @ _1)(qj—1j_1)...(q_1)

g’ g
- ((qj—l—l)(qf—z—l)---(q—l) + (qj+1—1)(qi—1)---(q—1)>

+ gjf—z + §§+2
(@72-1)(¢?3-1)-(¢-1) ' (¢F2-1)(¢ 1 -1)+(¢—1)

g g
B ((qf‘sl)(qjj“ll)-"(ql) + (qj+31)(qj+21)"-(q1)) +Rjn(&5:9); (37)

where

j—4 ; &
Rj,n(fja Q) = Zi:o(_l)lﬁ—] (qk_l)(qk—lj_l)...(q_l)

n ] f"c
+ Zk:j+4(_1)k+J (qk_l)(qk—lj_l)...(q_l) =: El(&ja q) + 22(§j7 q)- (38)

For Vz € (¢ — 1,411 — 1)

k k+1

(-1 =1)(¢g—1) = (¢FT -1 -1)--(¢-1)

holds for 0 < k < j—1. So for all z € (¢/ —1,¢/t! — 1) summands in %(z,q)
are alternating in sign and their moduli are increasing. Analogously Vz € (¢’ —
]-a qj+1 - 1)

<

Zlc Zk—}-l

@D 1) (-1 = @ —D(g—1)-(g—1)

holds for j +1 < k < n. So for all z € (¢ — 1,¢T! — 1) summands in Zy(z, q)
are alternating in sign and their moduli are decreasing. Thus Xi(z,q) > 0,
Yo(z,q) > 0 for all z € (¢/ — 1,¢t! — 1), and, in particular, it is true for
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z=§= \/(qj —1)(¢g¢*t! — 1). Hence we have

. J+1_1)i/2(gi —1)i/2-1 G+ _1)G-1)/2(gi _1)(G—1)/2
(_1)]Sn(fjaQ) > (513—171))(,11—(371).)..((1,1) - 2(q(qj—l,)1)(qj—2(31)...)(q,1)
n ((qul_l)j/2‘—1(qj_1)j/2—1 (qurl_l)j/2.+1(qj_1)j/2+1)

(@=2-1)(¢ =3 —-1)(¢g—1) (@92 -1)(¢? 1 —1)-(g—1)
_ ((qj+1_1)(j—3)/2(qj_1)(j—3)/2 (qj+1_1)(j+3)/2(qj_1)(j+3)/2)

(¢F=3-1)(¢7=*=1)--(¢-1) (g7F3-1)(¢'+2-1)-(¢—1)
= S (-2 + (et + )
i e A ) (39)
Since q](;__ll < % we have
(—1)75n(&5,9) > ot (1-2y/ 5
+HGaTy + ) - ) = et e B (40)

Reasoning analogously for j = 2 and j = n — 2, we obtain

; J+1_1)i/2(gi —1)i/2—1 j —
(—1)38n(€),0) > Gl (1- 2/ 525

J—1_1 J_ JHL_1)d/2(gi —1)i/2-1
O+ ) - ) > N SR ). (4

We will estimate Fj(q) from below. We have for any A € R

_ ¢ -1 ¢ -1 d-1
Bl = =2 gma—g T - Agm— + =)

¢ -1 2
+ @wﬂ—fﬁw . (42)
Since Zjij < ¢*+q+1 for j > 2, we obtain
@1 2 g g 2471
g1 gor St 1 q Ag-1-1

¢ -1 o2 (92 2, 2

for A > 2(q%+g+1)

FIE Since g > 3,

2(¢>+q+1) _2-13
q%/2 < 39/2 <02.
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Put A = 0.2 . Then by our estimates we have

¢ —1 ¢g1-1 ¢g-1
Fj(q) > 1—2,/qj+1_1+(0.8qj+1_1+qj+2_1)

For j > 2,q > 3 the following inequality is true:

| 1 9 9 ¢ -1
: > > : )
@t —17¢?24+qg+1 7 13¢> ~— 13¢g+2 -1

| ¢ —1 9 ¢ —1

71 <¢+2—1 (@ =) (@ =)V mm)

Thus,

S I\ g1 @i -0 (-1 130
¢ =1 (@21 (-1 202
Tgtz—1\ ¢ -1 (g7 —1)3/4 130 | °
Let us consider a polynomial
202
t) =t =283 + .

Obviously, for ¢ > 3/2 this polynomial is increasing in ¢ and Q(1.7) > 0. Hence,
Q(t) > 0 for t > 1.7. Since

J+2 _ 1\ /4
(211" s s v

¢ -1

for ¢ > 3 we obtain

Fj(q) > -1, <(qj+2_1)1/4> > qu_l Q(V3) > 0.

G 1\ (g DI ) T g

Thus, by (40) and (41) we conclude that for ¢ > 3 and j = 2,3,...,n — 2 the
following inequality is true:

(_1)an(fj7 Q) > 0.

It is obvious that S, (0,¢) > 0. It remains to prove that

Sn(€1,9) = Sn(V/(¢*> = 1)(¢ — 1),9) <0.
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We have : )
_ — _ T 1
I ()
. 3 &1 31
-1 k+1 J —(1 1
+kZ:3( ) @D -1 (g1 = g1 ( +((12—1)((1—1))’
whence
Su(E10) > f‘11—2>o<:»q2—1z4(q—1).

So, for ¢ > 3 we have —S,(&1,49) > 0.
Lemma 4 is proved.

Lemma 5. Suppose Pop_o(z,q) := E?if(—l)j
No Sn(z,q9) € R*.

Proof of Lemmab. Wehave

q]gjm € R*. Then 3N, Vn >

n

(=1)"Sn(z,9) = > (_1)n+j(qﬂ'—1)(

j=n—2k

4
1) (g—1)

n—2k—1 Zj

gy
D [PV EER ey

zn—?k 2219
T F - F -1 (1) ((Q" —D(g" = 1) (gn 1)

sz—l 2

(g = 1) (g2 = 1) (g2 1) L gn—2k+1 _ 1 + 1) + R (2),
where Ry, 1 (2) < 0 for z > ¢"™3 — 1. So for all z > ¢"~3 — 1 we obtain

Zn_2k ZZk
< @D D) (g-1) ((q"—l)(qn‘l—1)"-(11"‘2’“*1—1)
2219—1 z
Il e s e s e o s S T o 1)
Zn—2k:
= G D 1 k() (43)

Denote by u = qn_ik%. We have

n—2k+1_1)2k—1 k

u?
Fn,lc(Z) = CI)n,k(’U:) = ((qn,l)(gn—l,1)...(qn—2k+2,1) ' (Va)%*

(qn—2k+1_1)2k-2 21 u
T T )@ D) (g 1) (\%)%4 + - \% + 1)
2% 2%k—1
—n—o0 (ﬁ“)(w - (\/g)(%,lﬂ +oo = Jo+ 1= Py(u,q). (44)
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By the condition of Lemma Py o(u,q) € R*. As it was mentioned above (see
(11)), in |6, Lemma 4] it was proved that

Poy_9(u,q) € R* & Jug € (v/q,(v/a)*), Por—2(uo,q) <0,

and consequently

ugk—l u%k
Poy (ug,q) = Por—2(uo,q) — WA <0.
Since i
w2k (\/6)4
PQk(u,Q) = (\/a)(?k)QPQk " »q |,
we have
E|ul S ((\/&)41‘:73’ (\/§)4k71) ’ PQk(ulaq) < 0.
By (44)
Ing Vn>ng, Ppir(ur) <0,
hence
gr A -1 n—1 _ 2k—2 n _  2k—1)
Vn>ny Fz1n = Tm €@ ¢ " -,
Fn,k (zl,na Q) <0.
By (43)
Vn>ng (=1)"Su(z1,n,9) <O0. (45)
We take ng > 2k and will check that for all n > ng
¢ =P V(@ - D) (@2 1) = s (46)

Really, this inequality is equivalent to
q2n—2 o 2qn+2k—3 + q4k—4 > q2n—3 . qn—l . qn—2 +1. (47)

Since g > 3, we have ¢°"72 —¢®™ 3 > 2¢?"3, and, taking into account
n > ng > 2k, we obtain

q2n—2_q2n—3_2qn—|—2k—3_|_qn—1+qn—2+q4k—4_1 > 2q2n—3_2qn+2k—3+qn—1+qn—2
+q4k—4 —1= 2qn+2k—3(qn—2k o 1) + qn—l + qn—2 + q4k—4 -1

Z qn—l + qn—2 + q4k—4 —1>0.
So (47) holds, and hence (46) is true.
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By Lemma 4, (46) and (43) there exist nonnegative numbers 0 = £, < & <
E<... <€, 9< Z1n = &n_1 such that

(_1)an(£j>Q) >0, lim (=1)"S,(z,q) = +oo.

r—r0o0
Hence
2k—2 ' 2‘7
Por2(z,q) = Z (—1)JW € R* = 3Ny Vn > Ny Sn(2,q) € R".
j=0

Lemma 5 is proved.
To complete the proof of Theorem 3 we mention, that in [6] (see Theorem
(2)) it is proved that
dNyg € N VEk > Ny PQk,Q(Z,q) eER & q > Goo-

Theorem 3 is proved.

5. Some examples

Let f(z) be an entire function of the form (14), namely

z

_ Camee T4 2o &, 18
f(z)=Cz IT0+20 (48)

where m € NU{0}, C,€R, a>0and0< z; < o0, Z,C:’:lm%<oo.ln
k

this section we will answer the following question: for which a does the function

> im0 o ])aZJ—j2 has the sections with only real zeros?
To investigate this problem we need the following statement.
g p g

Statement 1. For every function f of the form (48) the following limit exists:

N ¢
% fG - DG+

and

. fz(]) _ eQa
PTG oDIGHD C )

Proof of Statementl. Wehave f= ff2, where

[o¢]
2z

fi(z) = CzMe o bz fo(z) == H(l + i)67%.

X
k=1 k
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Obviously, there exists the limit

lim fi()
j=oo fi(j —1)f1(j +1)

and 20
lim L = ¢e%,
i=oo frl =110 +1)
It remains to prove that there exists the limit
2 .
N 0)
i~oo fo(j — 1) fa(j + 1)

and this limit is equal to 1. We have

log — 130) . :i ((log(1+i)2—ﬁ)

fli-1f0+1) & Tk, Tk
1 —1 i+1. 41
(log(1 + 2721~ 171y 10501 + 12 ”i))
k Tk k Tk
o] J\2
D DT
= )+ 50)
Since
(1+E)2 1+_1+L é
_ -1+
L+ ZhH+ L) - 1+23+”* 1+ 54 55t
we have i
< (1;Fﬁ) _ _1+i2,
(1+2501+45) z?

(50)

and so series (50) is majorated by a convergent numerical series Y oo w% and each
k

term of (50) tends to 0 as j — oo. Thus, by the Lebesgue dominated theorem

series (50) tends to 0 as 7 — oc. Hence

£3(5)

a+d)?
. R OAGTD O (fi‘?ozl‘)g( 1+ L0+ 22 )) "

Statement 1 is proved.

Using Statement 1, we will prove the following statement.

Statement 2. Denote by ¢, f(2) := Z] o f(4) ZJQ, a > 1, where f is of the

form (48).
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(i) (ae®)? > goo = @u,p € A%;

(i) (ae*)? = goo => @a,f € S*;

(1) (ae®)? < goo = Pa,f ¢ S*

Proof of Statement2 We have ¢,f(2) zz;";ofo(j)ﬁ,

where fo(z) = C2z™eP* [[22 (1 + é)e_ﬁ. By Theorem G the function ggea (2) =

Z;’;O (ae‘i i € A* provided (ae®)? > gs. Since by Laguerre’s theorem the se-
quence {fo(j)}52y € CZDS we obtain (i). Analogously by the first statement of
Theorem G the function ggea € S* provided (ae®)? = goo and since the sequence
{fo(5)};29 € CZDS we obtain (ii). Corollary formulated after Theorems 1 and
2 and Statement 1 imply (iii).

Statement 2 is proved.
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