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The most interesting result of the paper is that for any two complemen-
tary subsets A and B of the set of positive odd integers there exists such
a sequence {ay }pe, C [—1,1] that

oo
Vm € A : the series Z o' is convergent and
k=1

oo
Vm € B : the series z oy is divergent.
k=1

Using the map 7 —» ||7||)‘ ”g—” as a substitute of the power function,

one can prove similar results for vectors and positive not necessarily integer
exponents A.

To Iossif Vladimirovich Ostrovskii on the occasion of his 70-th birthday

Introduction

Properties of powers of series with positive terms have been quite thoroughly
studied. It is enough to mention, for instance, the theory of [P-spaces (often
disguised as LP-spaces on spaces with measure) [2] or M. Riesz—Thorin’s Inter-
polation Theorem, also known as Riesz’s Convexity Theorem [2, 3]. In contrast,
there is no paper talking about powers of sign-changing series, at least to the best
of the author’s knowledge. In this paper, we study convergence and divergence of
powers of sign-changing series.

The most interesting, in the author’s opinion, and rather unexpected result of
this paper is the following theorem:
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On conditionally convergent series

Theorem 1. For any complementary subsets A and B of the set of positive
odd integers there exists such a sequence {ag}re, C [—1,1] that

o0
Vm € A: the series Z ap' is convergent and
k=1

o0
Vm € B : the series Zakm is divergent.
k=1

This theorem is an immediate corollary of the following result that is formu-
lated in terms of the following "power with sign™ & — |z|* sign (z).

Theorem 2. For any complementary subsets A and B of the set of positive
integers there ezists such a sequence {ag}re, C [—1,1] that

o
Vm € A : the series Z |ag|™ sign (a) is convergent and
k=1

o0
Vm € B : the series Z |ag|™ sign (o) is divergent.
k=1

As we'll see later, the proofs of Theorem 1 and Theorem 2 (as well as the
proof of more general statement of Theorem 3 from which they are derived) are
based on the possibility to construct a certain "atom” series whose all positive
odd powers, or all positive integer powers with sign, but one given converge and
this single one diverge to oco. The straightforward complex analog of Theorem 1
— as well as of Theorem 2 — is way too simple. The reason is that in this case, it
is very easy to build such an atom series using a well-known property of complex
roots of one.

Example. Let p be a positive odd integer. An atom series may be defined as
follows:

a; =exp{l-2ni/p},ar =exp{2-2mi/p},...,0p = exp{p  2mi/p} =1,

OtH_exp{l-Qm'/p} Ot+2_exp{2-27ri/p} o 1
P S e 2 = e G =

exp{1-2mi/p} _ exp{2-2mi/p} 1

ALY S EA S A /TS

It is evident that the series aim"'l, m € Zy, converges to 0 when 2m + 1 < p,
diverges to oo when 2m + 1 = p, and absolutely converges when 2m + 1 > p.
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This example implies that any reasonable vectorial analog of Theorem 2 should
contain some restrictions on the range of directions of terms as the following result,
which is in a sense the best possible, does.

Theorem 3. Let 31, ﬁQ, ey Z?q be such a finite set of unit vectors of R¢ that
the conver cone

cone(ﬁl,...,ﬁq): 7:iAjC—J\j,AjZO

j=1
contains at least one straight line. For any complementary subsets A and B of
[e o]
the set of positive integers there erists such a sequence of vectors {7k}k C R¢

that, first, 7
k

2"

and, second, the series

wj(k) E{al,...,jq},kzl’z.“’

S |7 B
k=1

converges for all m € A and diverges for all m € B
If the cone cone (5)1, .. .,ﬁq) does not contain any straight line, then such
sequence does not exist if at least one element of A precedes some element of B.

The proof of Theorem 3 is based on the following lemma:

Lemma 1. Let &1, &, ..., ﬁq be such a finite set of unit vectors of R® that
for some positive A1,...,\q the following zero property

q
S ND; =T
j=1

1s valid. Let € > 0 and let p € N. Let also
7k = ||7k|| Z?j(k)aj (k) € {1""aQ},k € N”H?k“ — 0 as k — oo.

Then there exist such a sequence of vectors*

ﬁ)l = Hﬁ)lH ﬁj(l),j(l) e{l,...,q},l €N,

* We take the liberty to use the same notation j(-) for three different functions that share
the domain and the range, and perform the similar task. The first function j (k) determines the
direction of vectors g's of the given sequence { ¢}, the function j (I) does the same for vectors
h1 we are going to construct in the lemma, and the function j (I') determines the direction of
auxiliary vectors &, we use to prove the lemma.
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and such a sequence {lk},;“;l C Nyl T 00 as k — o0, that the following statements
are true:

_)
(i)VkeN: by = g
(ii)maX{HﬁlH (e N} = max {|| g x| : k € N} ;

o _) m

111) For any m € {1,...,p} the series h, g ) 18 convergent;
i)
=1
(tv) For any m € {1,...,p} and any L € N the norm

Lo im
[ e
=1

(v) For any m > p+ 1 the inequality

Z Hﬁle < € 18 valid.
1eEN\{lx}l,

< (1+¢&) max {||gkl™ : k € N} ;

According to this lemma, one always can add relatively small new terms to the
sequence {g }r; so that a given number of powers with sign of the corresponding
series converge. Carefully choosing {gi}se,, it is possible to obtain an “atom”
series we talked about above.

Remark 1. It is possible to chase out ¢ from statement (iv) but it makes
the proof much longer.

Remark 2. The statement of Lemma 1 with a little weaker estimates re-
mains true if the initial sequence {?k} has a wider range, namely, any converging
to 0 sequence of the whole cone cone (W1, ..., q)-

The concept of power with sign allows to consider not only integer but also
any positive power A of terms of a sign-changing series. Analyzing such noninteger
powers of the series

o0
>
k=1

constructed in Theorem 2, one can see that if B is infinite, then the powers with
sign of this series converge only for A € A. It means that for each given Ay > 0
there exist only a finite number of such A € (0, Ag) that the series

o0

Z o sign (cu)

k=1

converge. The following question arises quite naturally: Is it possible that for
some positive Ao the series 3 o |’ sign (o) is divergent while for some infinite
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set A of A € (0, Ag) the series 3 o | sign (ay) is convergent? The positive answer
to this question is given by the following result:

Theorem 4. There ezists such a sequence {ay}rey C [—1,1] that the series
ppa] lag|* sign (o) is convergent for all X of some continuum A C (0,1.5) and
1s divergent for A = 2.

The author believes but cannot prove at this moment that it is not the case
if the set of the exponents of convergence A contains some interval or even if it is
of positive Lebesgue’s measure.

In the next section we prove Lemma 2. In the last section there are proofs of
Theorem 3 and Theorem 4.

The author would like to express his gratitude to Professor Farshod Mosh
whose question "Let a series > -, 7y, with real terms be convergent. Should the

series
o0

Yk
Z 1+ |ykl

k=1

also converge?” arose the author’s interest to the topic. By the way, the answer
to Professor Mosh’s question is negative. It follows immediately from Lemma 1
if one takes d =1, g = ﬁ, and p = 1.

Proof of Lemma 1

We need the following two simple statements about convex sets of vectors.
The reader can find its proof in any book on Convex Analysis, for instance, in [1].

Lemma 2. Let 31, D)Q, . ,E?q be a finite set of unit vectors of R%. Then the
conves cone

cone(al,ﬁz,...,ﬁq) = ?:zq:)\jdj,)\j ZO

Jj=1

contains at least one straight line if, and only if, for some X\; > 0 where at least
two of A\; are positive
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Proof of Lemma 1. We will use induction by p. Let p = 1 and let
{l}p=1 .11 = 1, be an increasing sequence of positive integers with the following
properties:

(a)Vk € N i1 — I, = 0 (mod q);
2

(B)Vk e N: DX _ ¢

: < &;
min\; g — g ’

@3 (UFelma) 1
min/\j lk+1—lk ’

k=1

- -
Let us define hy = ﬁ Assume that all h; with [ < [} are already defined and
satisfy an equation

Ixr—1
e —
@Y 7 =T
=1

Let us denote by a(mod ¢) such a number b € {0,...,q — 1} that b = a(mod g).
The next cycle of h; is defined as follows:

_)
K, =0k=dkxl Wi(k)

= _Agm+nmodq  qll gkl
1 — w

(3(k)+1) (mod g)3 - - -

Aj(k) L1 — lg
Ty = MW Dot e algel
-+ k) Teer — 1 G- (mod 0
— -
hlk+q =0 H
Ty = M@ moda  glgel
kT4 )\j(k) lk+1 — I (4(k)+1) (mod q)> ’

T = NGk 1) (modq) allgull R
k+1 Xjk) lestr — Uk (4(k)—1) (mod q)

Due to the zero property, condition (d) is satisfied — so, we can keep

going. Assuming that ¢ < 1, we see that (i) and (4¢) are evident. For n =

1,2,...,(lk+1 —lk) /q,
lp+gn—1
— n - n
3 hl:<1—7q )hlk:(1—7q )m.
Py U1 — li U1 — Ik

So, for each such n
lg+gn—1

_)
Z hl—>6>ask—>oo.
=1
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Let L be any integer of the interval [l + ¢ (n — 1),lx + gn — 1). Then, due to (b),
the inequality

B S P SR 1
=1 I=lx+q(n—1)

2

max); |Gkl
<(1- _ )
_< lk — )II? I+ S A A <@+e) |7l

is valid. It means that (7i¢) and (iv) are also true. Without loss of generality, we
can assume that max {|| x| : £ € N} < 1. Therefore, by (c), for any m > 1

s ]

TEN\ {1}, lEN\{lr}rzq
oo lg+1—1 oo 2
— 2 qmax \; |7l 1
< E E < E
= H th - ( min A; b1 — Ui <€
k=11=l;+1 k=1

and we conclude that (v) is true as well.

Assume now that the statements of Lemma 1 are true for all p < P and prove
that, in this case, they are true for p = P. Let {l}};° 1] = 1, be an increasing
sequence of positive integers with the following properties:

(a')Vk € Ny — I, = 0 (mod g);

max A j q°

(b')VkEN: 7 < ¢

. ) 1
min \; lk+1

f: gl gkl max ), ,\D/ qmax A,
(

min \; l;c—l—l — Z;C) min \;

<eE.

1

k=
7.

We define € = Let for all I’ < I} vectors €y are already defined and let

-1

(@) ZHel/ n=0.

=1

The next cycle is defined as follows:

@y =Gk =17 kllwjry;

s

- _ p| ME(k)+1) (mod q)

€p 1= . ﬁ w(; (mo ces
et \/ Aji(k) (l;c+1 _l') 9%l a0
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s
— _ (j(k)—1) (mod q)
€l+q-1 = 1\)/ )\j(k) : (Z;H_l — ll) |7k” W(j(k)—1) (mod q)’
%
?l’,d—q =0y
Ao
?l’ =7 (j(k)+1) (mod q) ||7k|| w( (mod
B Ajtk) (l?m —1}) et
s
— (§(k)—1) (mod q)
€y 1= w -
lo-1= \/ i) (l;c—I—l ~1) 19 k1l w2(ick) 1) mod o)-

Due to the zero property, condition (d') is satisfied — so, the construction keeps
going. (%) and (4i) are again evident. Reasoning as above, we obtain, first, that

the series
o
— P
dMolenl” o
=1
is convergent, second, that for any L € N

Z Iewll” &

=1

<(1+e max{||7k|| ke N}

and, third, that for any m > P

oo

> IEl™<e

reM{l},
i.e., the fulfillment of (#4%), (v), and (iv) for m = P.
According to the inductive assumption, for the sequence {?y}f,o:l ,p=P—1,
- - o0
and given € > 0 there exist such a sequence {hl = H th aj(l)}l . C R?* and

such an increasing sequence of integers {ly};° ; that the following statements are
valid: N .
(i")VI' eN:hy, =€y =>VkeN:hy, =7
k

(i) max {| 71| -1 € N} = max (| @] : ¥ € N} = maxc{|| ll - k € N}
(zzz') For any n € {1,...,P —1} i Hﬁle Z?j(l) is convergent;

=1

(iv") For any n € {1,...,P —1} and for any L € N

Matematicheskaya fizika, analiz, geometriya , 2004, v. 11, No. 4 477



Vladimir Logvinenko

L
Hzﬂﬁlumm) < (1+e)max {|[4|™ - k €N} 5

I=1

(U') For any n > P the inequality Z Hﬁle < ¢ is valid.
leM{l i,

Statements (i) and (44') are equivalent to (i) and (1), respectively. Statements
(i17') and (v") imply (4i7). Statements (iv') and (v') imply (iv). At last, for any
n>P+1

> F s X E]+ S <2
l€N\{lz;C}Z°:1 lEN\{ly }iZ, reN\{1;}2,

Lemma 1 is proved. u

Proofs of Theorem 3 and Theorem 4

Proof of Theorem 3. Let, first, the cone cone (&1,..., ) contain
a straight line. Then, by Lemma 2, there exist such nonnegative real numbers
Ay A A4+ /\g > 0, that the zero property

q
SND; =T
j=1

is valid. If some of \; are zeros, we skip the corresponding E)j. So, without loss
of generality, we assume that all \; are positive. Let B = {m;};_; C N. Only the
case of w = oo and B # N is of interest for us. For each 7 € N let

where constants e; > 0 are chosen so that
o0

> |7

k
k=1

Y 00
C R* and {l,(j)}k . be those two sequences whose existence is

m;+1
= 1.

=)
Let { h l(z)}
=1 '
guaranteed by Lemma 1 for these ?,(CZ), k=1,2,...,p=m; — 1, and € = 1. Let,
at last, positive numbers 7;, 1 = 1,2, ..., satisfy Zf; 7n; = 1.
Applying Cantor’s "sweeping from a corner” procedure, we define vectors
o

,,} » as follows:

- - - - -
71 = h§1),7}2 =1m hgl),73 = n2h§2),7}4 =m hg1),75 = B,
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76:7I3h ?7—771h ?8—772h:(:,),?9—773h2a?10—774h(4)

Let n be any element of A, let ¢ € N, and let

Ao =3[

=L

(%)
!

(%)
!

n

=

All vectors ﬁSf ) are well-defined. Besides, they are uniformly bounded as well as
partial sums of corresponding series. Given any n > 0, let € N be so large that

e .
Z ;' ﬁ%’) <n and
i=r+1
n B
stup ZH Hﬁ)’ :LeNy <
1=r+1
Let also s € N be so large that for all i € {1,2,...,r}
L 7 ()
~ 7" P
sup H® — H h , <.
1>s| " ; l wm) K

Let us fix these r and s. Let also number N € N be so large that the numbers

Ly, Lo, ..., L, of those of vectors 7,,,1/ € {1,2,...,N}, that are generated by
- — -

{ h l(l)} , { h 52)} yenns { h l(T)} respectively are greater than s. This choice guar-

antees that the inequality

) Zﬁﬁ

?i

(%)
l

L ~HO| + 25 < 49
!

n

S

is valid. Therefore the series

=

1

converges to

Znnﬁ(z

Matematicheskaya fizika, analiz, geometriya , 2004, v. 11, No. 4 479



Vladimir Logvinenko

Let now n = n;, € B. The same reasoning as above proves that the series

H? I

— oo
where total only those of terms that are not generated by { h l(zo) }l ) is convergent
to B

i nrH Y

i=1i#io

> [
=1

is divergent. It means that the series

while the series )
n R0

H 7, (io)

H?’ H

is divergent. The first statement of Theorem 3 is proved.

If cone (31, .. ,TJ ) does not contain any straight line, then there exists such
ahyperplane in R? that passes through the origin and separates cone (&1, .. ., E?q)
and cone (= d1,..., E)q). Let 77 be a normal vector to this hyperplane. As-
sume, without loss of generality, that all dot products ﬁ ‘>0 and, therefore,
mln{ﬁ o j =1,...,q} =0 > 0. If for some 7 € N and some sequence

V€ N the series > 07,

j(v) 18 convergent, then

i) "

Therefore all of the series Y 0 ; ‘
lutely. Theorem 3 is proved. [

Wi,y With m > n are convergent abso-
i) g

Y 00
Proof of Theorem 4. Foranyj € Z, let {a,(cj)}k_lbeoneoftheseries

. 1120 ,
such that for | = 1,...,27 the series > o, ‘a,(f )‘ sign (ag )) are convergent

N [2 .
and the series Y77 ag’| sign (a,(f )) is divergent to co. The simplest way to get

.\ ) 00
such a series is to use the one-dimensional case of the sequence { f,S] )} we have
v=1
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used in the first part of the proof of Theorem 3 when B = {27 +1} and to define

. 127 .
a,(c]) = ‘f,gj)‘ sign (f,gj)), k=1,2,.... Let nj, 7 = 1,2,..., be such positive
numbers that Y 7%, n; = 1. The sequence {ay};, is defined in the following way.
Let No = 0 an let N; be such a large number that

Ny 9
Z ‘a,(cl)‘ sign (a,(cl)) > 1 and
k=1

T 12
sup{ sign(a,(f)) :L2N1+1,r€{§,§}}<771,

let Ny > Nj be such a large number that

> [

k=L

N»
Z ‘a,(f)r sign (a,@) > 1 and
k=N1+1

>

sup{
k=L

r 1 2 3 22
sign (a,(c?’)> :L>No+1,r€ {— =, 75 2—}} < 72,
and so on. Then for N; +1 <k < Nji1, 7 =0,1,..., we define a;, = a,(cj).
1 2 o A )
Let r € {i’ RN 2—J} where j is any nonnegative integer. The series
Y opey lag|” sign (a) is convergent. Indeed, for Nj +1 < L < M < N; — here j
is the greatest and J is the smallest possible — we have

M Njy1 , J—2 | Niy o .
Z lak|" sign (ax)| < Z ag) sign (a?) + Z Z ‘a,(f) stgn (a?)
k=L k=L i=j+1 [k=N;+1

M (T .
+ Z ag) sign (a,(cj)) <2(mj—r -+ ns-1).

k=Nj_1+1

and convergence is implied by Weierstrass’s criterion. On the other hand,

00 N1 No
Z |ag|? sign (ag) > Z |ag|? sign (ax) + Z lag|? sign (ag) + - -
k=1 k=1 k=N1+1

> 1414-- = .

For the just constructed sequence {ay}pe; the series Y po; azsign (ax) = oo while
all series Y 52 apsign (ax) = oo, where A is any binary rational number of the
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interval (0, 1] are convergent. In fact, they are convergent for all A that belong to
a certain continuum A C [0,1.5]. Let us describe this A.
Let €1 be such a number that

1 1
vxe(——eh§+eOLM1—aJ+fﬂ VL € [Ny +1, Ny :

2
L L ) A
. : 2
Z ‘ak|)‘329n(ak) = Z ‘a,(c)‘ sign (a,(c)> <4m.,
k=N1+1 k=N1+1

let €9 be such a number that

2
l l
V)\EU(2—2—€2,2—2+€2> VLE[NQ—I-I,N;),]:
=1

L L
Z \ak|)‘sign(ak) = Z ‘a,(f’)‘)\sz'gn(a,(cs)) < 4nq,

k=Ny+1 k=Ns+1

and so on. A can be defined as follows:
[e’s} [es} 21 l l
r=U(N (U (g_sj,gﬂj)
i=1 \j=i \I=1

The declared convergence for each A € A is obvious and all we have to do is to
prove that A is a continuum.
Let integers [; be so large that

g >27 W j=1,2....
Consider the set of all numbers
1.00...0d100...0d200...0d300...,

where d; = 0V 1 and there are [; zeros between the decimal point and d1, I3 zeros
between d; and di, and so on. Each such number belongs to A and their set is
equivalent to the set of all numbers

0.dydads ..., d; =0V 1,

that is binary representation of [0,1]. Theorem 4 is proved. |
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