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We give necessary and sufficient conditions for a divisor in a tube domain
to be the divisor of a holomorphic function with almost—periodic modulus.

To 1. V. Ostrovskii on the occasion of his 70-th birthday

Zero distribution for various classes of holomorphic almost—periodic functions
in a strip was studied by many authors (cf. [1, 4, 7-10, 17]). The notion of
almost-periodic discrete set appeared in [9] and [17] in connection with these
investigations. Its generalization to several complex variables was the notion of
almost—periodic divisor, introduced by L.I. Ronkin (cf. [14]) and studied in his
works and works of his disciples (cf. [5, 6, 15]). But these notions are not sufficient
for a complete description of zero sets of holomorphic almost—periodic functions
(cf. [18]): in addition, one needs some topological characteristic, namely, Chern
class of the special (generated by an almost-periodic set or a divisor) line bundle
over Bohr’s compact set (cf. [2, 3]). On the other hand, the class of zero sets of
holomorphic functions with almost-periodic modulus in a strip is just the class
of almost-periodic discrete sets (cf. [4]). That’s why it is natural to obtain a
description of zeroes of holomorphic functions with the almost-periodic modulus
for several complex variables without using topological terms. This problem is
just solved in our paper.

By Ts denote a tube set {z = z+ iy : x € R™,y € S}, where the base S is a
subset of R™.
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Definition 1. A continuous function f on Ts is called almost-periodic, if for
each sequence {f(z + hp)}n, erm of shifts there exists a uniformly convergent on
Ts subsequence.

In particular, for S = {0} we obtain the definition of an almost-periodic
function on R™ *

It follows easily that any almost-periodic function on a tube set with a compact
base is bounded.

Definition 2. Let Q be a domain in R™. A continuous function f on Tq is
called almost-periodic, if its restriction to every tube set Tk with compact base
K C Q is an almost—periodic function on Tk.

Definition 3 (cf. [14], for distributions from D'(R) cf. also [16]).
A distribution F(z) € D'(Tq) is called almost-periodic, if for any test-function
o(z) € D(Tq) the function (F(z),¢(z — t)) is an almost-periodic function in
te R™.

The next assertion is valid.

Theorem 1 (cf. [14]). A distribution F € D'(Tq) is almost periodic if
and only if for each sequence {h"} € R™ there exists a subsequence {h"} such
that the sequence of the distributions F(z + iz") converges uniformly on the sets
{k(z—1t): t e R™, k € K}, where K is any compact family in D(Tq).

Definition 4 (cf. [14]). The mean value (in the variable x € R™) of an
almost-periodic distribution F is the distribution cp(y) ® dz with cp(y) € D'(Q)
and the Lebesgue measure dz on R™, defined for a test—functions ¢ € D(Tq) by
the equality

(ep(y) ® dz, p(2)) = lim (2N)™™ / (F(2), oz — t)dt,

N—o0
max; ‘t]‘|<N

where t = (t1,...,tm) € R™.

Note that if F'(z) is an almost-periodic function on Tg, then cp(y) is a con-
tinuous function on 2. Further, if F(z) is an almost-periodic complex measure
on Tq, then cp(y) is a complex measure on §2 as well, and cp(y) ® dx is the weak
limit of the measures F'(tx + iy)dz dy as |t| — oo (cf. [14]).

By H(G) denote the space of holomorphic functions on the domain G C C™
with respect to the topology of the uniform convergence on compact subsets of G.

The following assertion is true.

* This definition is equivalent to another one that makes use of the notion of an e-almost
period; for m = 1 see, for example, [12], the extension to m > 1 is trivial.
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Theorem 2 (cf. [14]). If a function f € H(Tq) is almost-periodic, then
log | f| is an almost-periodic distribution on Tq.

The main part of the proof of this theorem is the following lemma.

Lemma 1 (cf. [14]). If f, € H(G),n = 1,2,..., and f, — f Z 0 in the
space H(QG), then log |fn| — log|f| in the space D'(G).

Now let

- 0%log|f|

(/)00 log | f| = (2/m) 92,07, (i/2)dz; A dzy, (1)

Jk=1

be the current of integration over the divisor dy of the function f(z) € H(G), z =
(#1,.-.,2m). In the case m = 1 this current corresponds to the discrete measure
with integer masses equal to the multiplicities of the zeroes of the function f.

Note that all the coefficients of the current (1) are complex measures on G,

2
and the "diagonal" coefficients 6(9;]_0752';‘ are positive measures (cf. [11]).

Clearly, the differentiation keeps the almost periodicity of distributions. There-
fore, it follows from Theorem 2 that all the coefficients of the current (1) are
almost-periodic distributions for any holomorphic almost-periodic function on Tq.
If we replace f by another holomorphic function on T with the same divisor, then
the coefficients of the current (1) do not change. Hence an almost-periodicity of
all the coefficients does not imply almost periodicity of the function f itself.

Definition 5 (cf. [5, 6]). The divisor ds of a function f € H(Tq) is
called almost—periodic, if all the coefficients of the current (1) are almost—periodic
distributions.

Note that in [14] a divisor df was called almost-periodic, if the measure

2
Z;nzl aazl;)gzlj | was almost—periodic on Tp. But that definition is equivalent to

the given above (cf. [6]).

There exist almost periodic divisors which cannot be generated by holomorphic
almost periodic functions. For example, let g(w) be an entire function on C with
simple zeroes at the points of the standard integer—valued lattice, and let d[A, p],
A, o € R™ be the divisor of the function g({z, A)+i(z, u)). This divisor is periodic
for vectors A, p that are linearly dependent over QQ or linearly independent over R
(with the periods m% and %%) Then d[\, ] is almost periodic
for A, u linearly independent over QQ and linearly dependent over R (for m = 1
cf. [18]; since a real linearly transform in C™ keeps almost—periodicity, the case
m > 1 follows as well). Besides, the divisor d[A, u] for any linearly independent
over QQ vectors A, u is the divisor of no holomorphic almost periodic function (in
the case m = 1, i.e., irrational \/u cf.[18], for m > 1 cf. [15]). A complete
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description of the divisors of holomorphic almost—periodic functions is contained
in the following theorem.

Theorem 3 (for m =1 cf. [2], for m > 1 cf. [3]). A holomorphic bundle
over Bohr’s compactification Kpg of the space R™ is assigned to each almost-
periodic divisor d on a tube domain T with conver base 2 such that:

the map d — c(d), c(d) being the first Chern class of this bundle, is a ho-
momorphism of the semigroup of positive almost—periodic divisors on Tq to the
cohomology group H%(Kp,Z), the kernel of this homomorphism is just the set of
all divisors of holomorphic almost-periodic functions on Tq,

a finite family M, p? € R™ corresponds to each cohomology class c(d) such
that o(d) = 3; e(d]N, ),

the mapping W : (A, u) — c(d[A, p]) is skew-symmetric and additive in vari-
ables A\, u € R™.

A description of zeroes for holomorphic functions of one variable with the
almost—periodic modulus is given in the following theorem.

Theorem 4 (cf. [4]; for divisors d[\, pu], A,u € R cf. [18]). A divisor d
on a strip is the divisor of some holomorphic function on the strip with almost—
periodic modulus if and only if d is almost—periodic.

Now consider the multidimensional case again. Note that for an almost-
periodic divisor d on T all the coefficients of the current (1) have mean values
in z. The imaginary parts of these mean values, i.e., the mean values of the real
measures (2/%)%% have the form a;dy ® dz, a;, € R (cf. [6]). By A(d)
denote the matrix with the entries a; . In the case d = d; for an almost-periodic
function f € H(Tq) we have A(d) =0 (cf. [13]).

Theorem 5. A divisor d on a tube domain Tq with convez base Q) is the divisor
of a holomorphic function with almost-periodic modulus if and only if divisor d is
almost-periodic, and the skew-symmetric matriz A(d) is zero.

To prove this theorem we need the following improvement of Theorem 2.

Theorem 6. A function f € H(Tq), f Z 0, has almost-periodic modulus if
and only if the distribution log|f| € D'(Tq) is almost-periodic.

Proof of Theorem6. Let|f(z)| bean almost-periodic function on
Tq, and let {h™} be an arbitrary sequence from R™. In order to check that log|f|
is an almost-periodic distribution on T, we will prove that for any continuous
function ¢ with compact support in T, the sequence of functions

u(t) = / log | (= + h™)p(z — t)dedy 2)
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contains a convergent, uniformly on R subsequence. We will prove this assertion
by contradiction.

First, since the function |f(z)| is uniformly bounded on Tk for every compact
set K C ), we may assume that the sequence of the functions {f(z + A")}
converges to some function g(z) in the space H(Tq). Further, since the function
|f(z)| is almost-periodic on Tq, we may assume that the sequence of the functions
{|f(z 4+ h™)|} converges to some function ®(z) #Z 0 uniformly on each Tk. If the
sequence (2) does not converge uniformly on R™, then for some § > 0 and some
subsequence of n there exist t* € R™ with the property

(%) — / log lg(2) (= — t*)dady| > 6. (3)

The function |g(z)| = ®(z) is almost-periodic on T, hence we may assume that
the same subsequence of the functions {|g(z + t")|} converges uniformly on each
Tk to some function ¥(z) # 0. Since the sequence of the functions {|f(z+h"+t)|}
converges uniformly in ¢t € R™ and z € Tk to the function |g(z + t)|, we see that
the subsequence {|f(z + h™ + t")|} converges to ¥(z) uniformly on Tk. Also,
the subsequences of the functions {f(z + A" +t")} and {g(z — ")} are bounded
uniformly on compact subsets of T, therefore passing to a subsequence again,
we get that f(z + A" + ") — Hi(2) and g(z + ") — H(z) in the space H(Tq),
and |H1(z)| = ¥(z) = |Ha(#)|. Using Lemma 1, we obtain that the corresponding
subsequences of the functions {log|f(z+h™+1t")|} and {log |g(z +t")|} converge,
in the sense of distributions, to the same function log ¥(z). The last assertion
contradicts (3).

On the other hand, let log|f(z)| be an almost-periodic distribution on Thq,
and let ¢.(z) be a nonnegative, depending on |z| smooth function such that
@(z) = 0 for |z| > € and [ @:(2)dxdy = 1. Evidently, the family of functions
{¢e(z + iy)}y<c is a compact set in the space D(C™) for every C' < oo. Let
K be a compact set in Q and ¢ < dist{K,09}. Now Theorem 1 implies that
the convolution (log|f| * ¢¢)(z) is an almost-periodic function on Tk. Hence this
convolution is bounded on Tk, and the inequality log|f(z)| < (log|f| * ¢<)(2)
shows that |f(z)| is bounded on Tk as well.

Suppose that |f| is not an almost-periodic function on Tq. Then there exists
a sequence of functions {|f(z + h")|}, h™ € R™, such that every its subsequence
does not converge uniformly on Tk for some compact set K’ C . Without
loss of generality it can be assumed that the sequence of functions {f(z + h")}
converges in the space H(Tq) to some function g(z). It is clear that g(z) is
bounded on Tk for every compact set K C €. Further, by Lemma 1 we get
log |f(z + h™)| — log|g(z)| in the sense of distributions. Using Theorem 1 and
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passing to a subsequence, we obtain

/(10g |f(z + 1) —log |g(2)|)pe (2 — t —is)dzdy — 0 (4)

uniformly in £ € R™ and s € K'. On the other hand, for some § > 0 and some
subsequence of n there exist points 2" = z™ + iy™ € T}, such that

lF (R™ + 2" +iy™)| = [g(«" +iy™)]| = 0. (5)

Passing to a subsequence if necessary, we may assume that y” — 3% € K’, and the
sequences of the functions {f(z + h" + 2" —iy®)} and {g(z + 2" — iy°)} converge
in the space H(Tq) to functions Hi(z) and Hz(z), respectively. Then Lemma 1
implies that log|f(z + A" + 2" — iyY)| — log |H1(z)| and log|g(z + 2™ — iy%)| —
log |Hz(z)| in the space D'(Tg). Taking into account (4), we obtain

/ log | H1 (2) 2 (= — i9°)dz dy = / log | Ha (2) s (= — iy°)dudy.

Since ¢ is arbitrary small, we get |Hy(iy®)| = |Ha(iy?)|. At the same time, by (5)
we have |Hy(iy°)| # |H2(iy®)|. This contradiction proves Theorem 6.

Proof of the necessity in Theoremb. It follows from
Theorem 6 that every function f € H(Tq) with almost-periodic modulus has an
almost-periodic divisor. Further, the mean value cqqf/(y) ® dz of the function
log | f| is the weak limit of the measures log |f(tz + iy)|dz ® dy as |[t| — oo in the
space D'(Tq), therefore for all j # k the mean values of the distributions

2 2 o
%8 log|f|:1( 0 0 >log|f|

0707 4 Oz jOyy, o Oz 0y;
equal
1 o2 52
lim > - 1 | d
|t\l—r)noo 4 (8$j3yk a,Ekayj) og |f(t:v —+ zy)|d$ ® dy
1 0?2 52
i - dz =0,
4 (5%'3% amkayj> Clog|f|(y) ® dz =0

The necessity of the conditions in Theorem 5 is proved.

The proof of the sufficiency makes use of the following lemmas. As above,
d[A, u], A, pp € R™ is the divisor of the function g(({z, A) +i(z, u)), where g(w) is
an entire function on C with simple zeroes at the points of the standard integer-
valued lattice.
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Lemma 2. The divisor d[\, p] with A = tu, A € R™, ¢t € R, is the divisor of
an entire function on C™ with almost-periodic modulus.

Proof of Lemm a2 After a suitable regular real linear transform we
obtain the case p = (1,0,...,0), i.e., the case of a divisor depending only on one
coordinate, therefore the assertion of our lemma is a consequence of Theorem 4.

Further, let e',...,e™ be the coordinate vectors in C™.

Lemma 3. The entries a; of the matriz Ay = A(d[e!, €?]) vanish for (j, k) #
(1,2) or (2, 1), and a12 = —1, ag; = 1.

Proof of Lemma3. The divisor of the function g(z1 + iz2) does not
2 .
depend on variables z; with j > 2, hence the distributions ga;ogal%;giﬂ vanish

for (j, k) # (1, 2) or (2, 1).
Consider the expression

(LZ IOg |g(2’1 + i22)|, (10(21 +t1,20 + t2))7 (tb t2) € Rza (6)
for L, = %%32?232 and a function ¢(z) > 0 from the space D(C?). In the
coordinates (1 = z1 + 122, (2 = 21 — 129, it has a form

1,- .
1 (Lcloglg(Cu)l, o((GL+ G2)/2 + 11, (G — C2) /20 + 12))
with
~ 2 o2 o2 o2 o2
LC = — — — — 4+ — — = ).
T \0C0C  0(0(1  0(10C  0¢20(2

Using the definition of g and properties of the Laplace operator, we get

2

loglg(G)l = > 6(¢1 — q1 —ige) ® dédn,

q1,92€Z

) 2
Leloglg(G)| = Z 5757

where ¢ is the Dirac function on the plane, & = R(2,n = S¢. Therefore, (6) is
equal to
1 . . . . .
1 2. | et (@ tige + &+ in)/2 s + (1 + gy — € —in) /2i)ddn.
91,92€Z ¢
Substituting & — g1, 1 + ¢o for u, v, respectively, we get

1
1 Z /(p(u/2+z'v/2+t1+q1,—v/2—I—z'u/2+t2+qz)dudv. (7)
q1,02€Z ¢
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Since the divisor d,1 .2 has period 1 in each variable, we see that the mean value
of (6) is the integral of (7) over the square 0 < t; <1, 0 < ¢9 < 1. Then it is
equal to the integral

i /w(u/2 Fiv)2+ 1, —v/2 + iu/2 + ta)du dv dt; dts.

R4

Finally, substituting u/2+t1 = z1, v/2 = y1, ta —v/2 = z2, u/2 = Yo, we obtain
the equality

1 1
// L log |g 21+ 222)‘ (,0(21 + 11,29 + tQ))dtl dty
0 0

= /tp(.’E1 + i1y1, T2 + 1y2)dx1 dyy dxo dyo,
R4

hence the mean value of the distribution L, log |g(z1 + i22)| is the Lebesgue mea-
sure in C2. The lemma, is proved.

By (A, ) denote the matrix product (A;juk)jy—; of the vectors A = (A1, ..., Am),
uw= (:u’la'-'aum) € R™.

Lemma 4. For any A\, p € R™, the matriz A(d[\, u]) equals the difference
(ks A) = (A 1)

Proof of Lemm ad4. If\ p are linearly dependent over R, then
(g, A) — (A, ) = 0. On the other hand, it follows from Lemma 2 that in this case
the divisor d[A, u] is the divisor of some holomorphic in C™ function with almost—
periodic modulus. Using the proved part of Theorem 5, we have A(d[\, p]) = 0.

Let A, u be linearly independent over R. The divisor d[A, ] is the divisor
dle',e?] in the coordinates ( = Bz for some real nondegenerate matrix B with
the first and second rows X and u, respectively. Note that the matrix A(d) is the
matrix of the mean values for the matrix o:(D(z) — D(z)), where

_ (9%1og|g((z, A) +i{z, )]
D(z) - ( 82’j8§k ) ’

D being the matrix with all the entries complex conjugated to the corresponding
entries of the matrix D. Therefore D(z) = B'D(¢)B, B’ being the transpose
matrix to B, and A(d[\, p]) = B'AyB for the matrix Ay from the previous lemma.
This completes the proof of Lemma 4.
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Lemma 5. If numbers a;, B; € R, j=1,...,n, satisfy the condition
Jr Pj
YT ajf; =0, then for some v, € R, vEeR™, k=1,...,N, we get

N

> Wlage', Bie?) = > W (ymrF, vb), (8)
1

1

W being the mapping from Theorem 3.

Proof of Lemmabj. The case n =1 means that the left-hand side of
(8) vanishes. For n > 1 we have

W(an,lel, /anleQ) =+ W(anel, /37132) = W(an,lel, anel)

+W(,8n627 ﬁnan/an—ICZ) + W(anel + anﬂn/an—1€2> an—le1 + ﬂn€2)
+W(an,161, (,anl + ,Bnan/anfl)ez)-

The first three terms of the right-hand side have the form W(yv, v), vy € Riv €
R™. Subtracting these terms from the left-hand side of (8), we get

n—2

Z W (aze', Bje”) + W(an—1€', (Bn1 + Bnom/om_1)€?).
1

Hence the lemma can be proved by induction over n.
Lemma 6. Let vectors M,/ € R™, j = 1,...,n be such that the matriz
S TN, u?) is symmetric. Then

N

DWW, @) =Y Wk, vk 9)

1
for some v, €ER, vF € R™, k=1,...,N.

Proof of Lemma6. The vectors M,/ are linear combinations of the
vectors el,...,e™, therefore the left-hand side of (9) has the form

M(p,q)

Yol S W, Biged) (10)

1<p,g<m \ j=1

with «;,, B4 € R. The mapping W is skew-symmetric, hence we may assume
that all the terms in (10) vanish for p > ¢, and the entries of the corresponding

m
matrix (Z]Ni(lp ) aj’pﬂj’q)p - vanish for all p > ¢. Since this matrix coincides
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with the symmetric matrix > 7 (M, u?), we see that ijvi(f’q) ajpBiq=0forp<gq

as well. Now it follows from Lemma 5 that for p < ¢ the sum

M(p,q)
Z W(ajapep’ ’Bj7qeq)
j=1
has the form of the right-hand side of (9). The terms of (10) with p = ¢ have
already the form W (v, v). The lemma is proved.

Proof of the sufficiency in Theoremb5. Letd be
a divisor in Tq such that A(d) = 0. It follows from Theorem 3 that there exist
M,y € R, j =1,...,n, such that the sum d + Zj d[M, 7] is the divisor of
a holomorphic almost-periodic function. Now, by [13], A(d + Y7 d[M, pu’]) = 0.
Since the mapping d — A(d) is a homomorphism, we get S_7 (M, p/) — (u?, M) =
ST A(AIN, pI]) = 0, i.e., the matrix Y 7(M, p?) is symmetric. Using Lemma 6,
we get (9) for some v, € R, v¥ € R™, k =1,..., N. Therefore,

N N
c(d+ > diy*, vr) = c(d) + > W (¥, V)
1 1

=c(d)+ Y W, p) =c(d+ > dN,u]) = 0.

An application of Theorem 3 yields that there exists an almost—periodic function
F € H(Tq) with the divisor d4+ YV d[y;v*, v*]. Using Lemma 2, we can take func-
tions fy, € H(Tq) with the divisors d[yx*, v¥] and almost-periodic modula. The
function f(z) = F(z)(Hiv fx(2))~! is holomorphic on Tq and has the divisor d.
Then Theorem 6 implies that the distributions log |F'| and log |fx|, k= 1,...,N,
are almost—periodic. Hence the distribution log|f| = log|F| — Zf/ log | fx| is
almost—periodic as well. Using Theorem 6 again, we see that the function |f]| is
almost—periodic. This completes the proof of Theorem 5.
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