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The aim of this paper is to indicate stochastic processes which are con-
nected with Stirling numbers of the first and the second kind and Euler
numbers in a natural way. A probabilistic approach allows us to give very
simple proofs of some identities for these coefficients.
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on the occasion of his 70-th birthday

4. Stirling numbers of the second kind

We recall that Stirling numbers of the second kind {Z} may be defined for

n € Ng and integer k as numbers which equal 1 if n =k =0, and 0, if £ < 0 or
k > n, and satisfy the following recurrence identity (see [1, Sect. 6.1])

n n—1 n—1
= k . 4.1
{k} {k—1}+ { k } (4.1)
Let Q, := {w = (e1,€2,...,6n) €5 =0o0r 1,5 = 1,2,...,n} be a set of all

sequences of the length n with elements 0 and 1, § = {ﬁj}]ﬁo be a sequence of
positive numbers. We define a weight wy, g on €2, inductively. For n = 1, we set

wig((1) =Ho,  wip((0)) =1. (4.2)
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Let m > 1. We define the weight of a chain of the length m to be
wmg((e1,€2, .- €m—1,1)) = wm—15((€1,€2,-..,Em—-1)) - B}, (4.3)
where j = #{l:1 <1 <m —1,¢ =0}, and
Wi g((€1,€2, .-y Em—1,0)) = wp—1,8((e1,€2, .-, Em—1)) - (4.4)

In other words, the weight of a chain (e1,€9,...,6m-1,6m) of the length m
equals the product of the weight of the chain (e1,e9,...,enm—1) and that of the
element &,,, which is equal to 1 if ¢, =0 and to 3; if ¢, =1 and #{k:1 <k <
m—1,e, =0} = j.

For every set A C (2, we define the weight W), g(A) of A to be

Was(A) =Y wypsw). (4.5)
weEA

It is evident from (4.5) that the additive property of the weight is valid:
Wns(AUB) =W, (A) + W, s(B), if AnNB=40. (4.6)

For the sake of brevity we write often w,, and W), instead of w, g and W, 3. For
n > 1 and 0 < k£ <n we denote

Enk = Enk(B) == Wn(0(F)) , (4.7)
where 0(}) = {(e1,€2,...,6n) € Qp : #{l : 1 <1 < n,g = 0} = k}. We denote

also &po(B) = 1, &ue(B) = 0 if k < 0 or k > n. We see that &,; is a polynomial in
the variables 3;, 0 <1 < k, considering 3; as independent variables.

Definition 4.1. Polynomials &, are said to be Stirling polynomials of the
second kind generated by the sequence (.

The following theorem gives a recurrence relation for polynomials &,.

Theorem 4.1. If n € N and 0 < k < n, then

$nk = En—1h—1 + En—1,k0k - (4.8)

Proof. Forj=0,1, wedenote A7 :=0(}) N {(e1,...,en) € Dy : &5 = j}.
Evidently, 0(7) = A° U A' and A° N A" = (. Therefore

€k = Wa(0(})) = Wa(A%) + Wy(A"). (4.9)
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We evaluate W, (A°). Obviously, w = (e1,...,en_1,0) € A" if and only if ' =
(e1,-+-s6n—1) € 0(}"1). In this case wy g(w) = wp_1,5(w') - 1 by (4.4). It follows
from this that

W, (A°) = Z wp(w) = Z wn—1(w') = W1 (0(}71)) = én14-1- (4.10)

we A W' €0(; 1)

Analogously, w = (e1,...,6n_1,1) € Al if and only if ' = (e1,...,e4_1) €
0(;1). In this case wy, g(w) = wy—1,4(w’) - B by (4.3). Therefore

Wn(Al) = Z wp (w) = Z wy—1 (W) B = anl(o(zil))ﬁk =&n—1,k5% -
weAl w’eO(z_l)
(4.11)
Inserting (4.10) and (4.11) into (4.9), we obtain (4.8). ]

For every positive integer | and a sequence 3 := {Bj}?ioa we denote () :=

{Bi+j }]9‘;0. The W,gl) will denote the weight on Q,, generated by the sequence 5.

Definition 4.2. Polynomials

Dm (B, (n=1,2,..., 0<k<n); =1,
wn the variables By, Bi+1, - .. are said to be associated of the rank | with polynomials

The following theorem gives a relation that includes &, and fr(llk).

Theorem 4.2. For alln > 1 and 0 < k < n the following recurrence relation

holds:
1

§nk = 51(1—)1,k:—1 + Bﬂgn—l,k . (4-12)

Proof Forj=0,1wedenote B’ :=0(%)N{(e1,...,en) € Q1 61 = j}.
Evidently, 0(7) = B U B! and B N B! = (). Therefore

Enk = Wa(0(3)) = Wi (B") + Wa(B"). (4.13)

We evaluate W,(B?). Obviously, w = (0,¢2,...,&,) € B if and only if w' =
(€9y...,6n) € O(Zj) In this case

Wy, 5(w) = Wp,_1,8(1) (WI)
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by (4.2)—(4.4). (For example, if w = (0,1,0,0,1,0,1) (n =7, w' = (1,0,0,1,0, 1)),

then wrs(w) = 1-B1 - 1-1- B3 1+ Ba, w g0y (@) = Proo-1-1- Brga-1- Brya)
Therefore,

Wn(BO) = Wn,ﬁ(BO) = Z Wy, 5(w) = Z wnfl,ﬁ(l)(w,)
weBO wleo(Z:ll)

W1 500G = w00z =€l . (414)

Analogously, we evaluate W, (B'). We have: w = (1,e3,...,&,) € B! if and only
if ' = (e2,...,6,) € 0(}1). In this case

wn,(w) = fo - wn-1,5(w)

by (4.2)—(4.4). (For example, if w = (1,1,0,0,1,0,1) (n =7, v’ = (1,0,0,1,0, 1)),
then w7,/3(w) = ,60 . Bg -1-1- ,62 -1- ,63, wﬁ,g(w') = ,60 -1-1- 62 -1- 63) Therefore

Wa(B') = Wop(B)= Y walw)=F D wn15)
weB! weo(zh)
= BoWn-1500(}" 1)) = Bo&n—1k - (4.15)
Inserting (4.14) and (4.15) into (4.13), we obtain (4.12). ]

Let us consider a particular case. We put
Bj:=j3 forall j>0. (4.16)

(Therefore, wy,(w) = 0 for every chain w = (&y,€9,...,&, ) such that e = 1.)
Then we get numbers &, := & ({j }320) satisfying the following recurrence rela-
tion (see (4.8)) ) ) i

bnk =&n1-1 +&n1k - K (4.17)

and conditions €y = 1, £pp = 0 if k < 0 or k > n. The theorem below follows
directly from the definition of Stirling numbers of the second kind {Z } (see (4.1)).

Theorem 4.3. Letn € N, 0 <k <n. Then

{1} =mwa0(). (4.18)

where W, denotes the weight on , generated by the sequence § = {j};’io with
the help of (4.2)—(4.5).
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In the following theorem we give the proof of the known fact (see, for example,
[1, formula (6.20)]), based on Theorem 4.3.

Theorem 4.4. If n € N and 0 < m <n, then

-2 o

Proof Let Fj:=00)N{(e1,...,6n):61=0,641 =€132=...=¢, =1}
for every I = m,m + 1,...,n. Here, [ gives the place of the last 0 in the chains
w € Fj. Tt is evident that these sets form a partition of 0(}},). We calculate
Wy (F). Obviously, w € Fj if and only if w has the form w = (w',0, 1(,_y)), where

W e O(l,;il) (We recall that j) denotes the sequence j,7,...,5.) In this case
—_—

k
wnp(w) = w15 -1+ By
by (4.3), (4.4). Therefore, by (4.18) and (4.16),
W) = W0 s = {17 b, (4.20)

Inserting (4.18) and (4.20) into W, (0(%)) = >/, Wn(F}), we obtain (4.19). m

The following theorem gives relations between Stirling numbers of the second
kind and associated ones with them.

Theorem 4.5. 1) If n,m € N and 1 < m <n, then

{ }:i]{”_]_l}(). (4.21)

J=1

2)Ifn,veN,1<v<n-—1,0<m<n, then
n ‘(v n—v)®
{m}:;{k}{m—k} ’ (422)

Proof. 1)Forj=0,1,2,...,m, we consider the sets

Gj=0()N{(e1,...,en) EQ:e1=...=¢; =0,gj41 = 1}.
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(Here, j + 1 gives the place of the first 1 in the chains w € G;.) Evidently, G;
form a partition of 0(}})). We evaluate W, (G;). Obviously, w € G; if and only 1f

n]l)

w has the form w = (0, 1,w’), where w' € 0( In this case (compare the

proof of Theorem 4.2)
Wy plw)=1-...-1-6; -wn_j_ljﬂ(j)(w') .

J
(For example, if w = (0,0,1,0,1,0,1) (n =7, j = 2, ' = (0,1,0,1)), then
wrp(w) =1-1-P2-1-P5-1-f4, Wy 52) (W) =1-P941-1-B219.) Hence, by the
definition of the weight W,,, we have

Wn(G]) - Z w”?ﬁ(w) =FMj Z wn—j—l,ﬁ(]') (w,)
wEGj w €0(n jj 1)
; ()
j n—j— fn—35—-1
= BerE]—)j—l(O(m_]]‘ M) ZJ{ e } : (4.23)

. ()
We recall that W) is a weight generated by the sequence {7+i}32, and {Z} =

W) (0(¢)) are numbers associated with Stirling ones of the rank j. Inserting
(4.18) and (4.23) into W, (0(7,)) = -7, Wi(Gj), we get (4.21).
2) For k =0,1,2,...,v, we consider the sets
Rp:={w=(e1,-- €0, 6041s--16n) E Y = (e1,...,6,) €0(}),
w' = (evt1,...,6n) €00 )}
Evidently, the sets Ry form a partition of 0(7},). We evaluate W,,(Ry). For every
w=(w,w") €Ry (W e0(}),w €0(")}) we have

m—k
'U)n7ﬁ ((IJ) = wV’/B (w )wn—u,,@(’“) (w”) °
(For example, if n =7, v =3, m=3, k=1, = (1,0,1), w" = (0,1,1,0),

w = (w',w"), then w3 g(w') = fo-1-B1, wy gy (W") = 1+ Pry1- Pry1- 1, wrp(w)
Bo-1-B1-1-pB-Py-1.) By the definition of the weight W,,, we have

Wa(Be) = Y > wyp(w)w, ,sm(@")

w'€0(}) wen(™ )

= | 2w ]| Y e (@)

w'e0(y) w"€0(™ ")
v (k) n—v 14 n—v (k)
= WEOW, 00 ={ Ji T a2

Inserting (4.18) and (4.24) into W, (0(,)) = > j_o Wn(Rk), we obtain (4.22). m
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Remark 4.1. Tt is easy to generalize Theorems 4.4 and 4.5 to the case of
an arbitrary sequence {f3;}.

5. Stirling numbers of the first kind

We recall that Stirling numbers of the first kind [Z} may be defined for n € Ny

and integer k£ as numbers which equal 1 if n =k =0, and 0, if £k < 0 or k > n,
and satisfy the following recurrence identity (see [1, Sect. 6.1])

[Z]:[Z:”Hn—n [”;1] . (5.1)

As in Section 4, let Q, = {(e1,€2,...,6) 16 =0,1;1 < j<n}, vy= {'yj};-";l
be a sequence of positive numbers. We introduce a weight w, , on the set {2,
inductively. We put for n =1,

wiy((1) =7,  wiy((0) =1, (5.2)
and for m > 1,
wm,7((61,62,...,6m,1,1)) = wmfl,’y((é‘lag%---agm*l)) *Ym (5 3)
Wiy ((€1,€2, ..y Em=1,0)) = wm_1((e1,€2,...,6m=1)). '

We define W, ,(A) for all A C €, as in (4.5). For the sake of brevity we write
wy, and W, instead of wy,, and W), -, respectively.

For every sequence v = {7;}72,, for all n € N and integer k, 0 < k < n, we

define polynomials 7, in variables 7; as follows:

Mk 2= Mk (7) := Wn(0(})) - (5:4)

For every sequence «y we define also ngo(y) = 1, nur(y) = 0if £ < 0 or k > n. For
each nonnegative integer n and 0 < k < n, 0, is a polynomial in the variables
Y, 1 <1 < n.

Definition 5.1. We say that polynomials n,, are Stirling polynomials of the
first kind generated by the sequence -y.

Polynomials 7, () satisfy the following recurrence relation.

Theorem 5.1. Letn € N, 0 < k < n, and n,,(y) be polynomials in v1,...,vn
defined by (5.4). Then

Mk (V) = Mn=1,k=1(7) + Mn=1,%(7) - - (5.5)
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This is an analogue of Theorem 4.1 and the proof is the same. ]

As in the previous section, we write y() ;= {fij}]?“;l for every [ € N.

Definition 5.2. Polynomials 777(12 = 9o (YD) in the variables Yi41,Yi42, . .-

are said to be associated ones of the rank I with polynomials Ny (7).

We consider now a particular case:
vji=j—1 foral j>1. (5.6)

(Therefore, wy(w) = 0 for every chain w = (e1,e9,...,&, ) such that e1 = 1.) We
get a set of numbers 7k, := Nk ({7 — 1}52,), which satisfy the recurrence relation

ﬁnk = ﬁnfl,kfl + ﬁnfl,k ' (’I’L - 1)

and conditions 799 = 1, M = 0 if £ < 0 or k > n. These numbers are called as
Stirling numbers of the first kind and are denoted by [n

k] (see (5.1)).
As a result, we can derive the following statement.
Theorem 5.2. Letn € N, 0 <k <n. Then

] = waloz)., (5.7)

where Wy, is the weight on Q, generated by the sequence v = {j — 1};-";1 with the
help of (5.2), (5.3), (4.5).

Using (5.7), we give very simple proof of the following known fact (see, for
example, |1, formula (6.21)]).

Theorem 5.3. If n € N and m is an integer such that 0 < m < n, then

Pl= [ e na s, 6.5

P roof. The proof is very similar to that of Theorem 4.4. We consider the
sets Fi, l=m,m+1,...,n, k=0,1,...,m, introduced in the proof of the first
part of Theorem 4.4. We find from (5.2) and (5.3) that

W) = Wi s s oo = | 0 10+ D042 (=),

Repeating the reasoning from the proof of Theorem 4.4, we obtain (5.8). ]
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The following theorem is an analogue of Theorem 4.5.

Theorem 5.4. 1) If n,m € N, 1 < m <n, then
m . ()
nl Jn—-5—-1
[m} N jzzlj [ m—j ] ' (59)

2) If n,uy,m € N, 1 <v,m <mn, then

[::L] - XV: m [:,LL__:;](V) : (5.10)

P roof The proof is similar to that of Theorem 4.5. We consider the sets
G, (1,2,...,m), Ry, k=0,1,...,v, introduced there. In our case the weights of
these sets are equal to

n—j—l](j) . |:n—j—1:|(j)
=7 )

Wiim+1(Gj) = Vg1 - [ m—j m—j

Wosmes() = 0w 000 = [7] [174] 7

The theorem is now immediate. ]

Remark 5.1. It is easy to generalize Theorems 5.3 and 5.4 to the case of
an arbitrary sequence {v;}.

6. FEuler numbers

Euler numbers <n> (n € No, k € Z) may be defined as numbers which equal

lifn=k=0,and 0, if £ < 0 or k¥ > n, and satisfy the following recurrence
identity (see [1, Sect. 6.1])

<Z>:(n—k)<Z:i>+(k+1)<n;1>. (6.1)

As before, let €2, be the set of all sequences of the length n with elements 0 and
1, {;}32, and {B;}72, be two sequences of positive numbers. Let us introduce
a weight on €2, by induction on n. For n = 1, we set

wi((1) =06,  wi((0)) =ar. (6.2)
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Let m > 1. We define the weight of a chain of the length m as follows:

wm((517527 <o Em—1, ]-)) = wmfl((é‘la €2y 78m71)) : /Bk ) (6 3)
wm((e1,€2, .-+ 6m-1,0)) = wm—1((e1,€25- -, Em—1)) - Wk, '

where k = #{j : 1 <j <m —1,e; = 0}. (We do not indicate the dependence
wy, on « and B3.) In other words, the weight of a chain of the length m equals the
product of the weight of the chain consisting of the first m — 1 terms of a given
one and of the weight of the m! term which is equal to o,_, if this term is 0,
and B, if it is 1 and if k¥ terms are 0 among the first m — 1 ones of a given chain.
Evidently, definition (6.2) is consistent with definition (6.3), that is (6.2) follows
from (6.3) if we take m = 1 and if we assume that the first term at the right-hand
side of both equalities (6.3) equals 1. As before, we define the weight W, (A) of
a set A C 2, by the formula (4.5).
For every n € N and integer k such that 0 < k < n, we define

By definition we put {po(c, 8) =1 and (,x(cr, 3) = 0 whenever k < 0 or k > n. It
is evident that (,; are polynomials in the variables «;, §; (if we consider «;, §;
as independent variables).

Definition 6.1. Polynomials (i (e, B) are said to be Euler polynomials, ge-
nerated by sequences o and [3.

The following theorem gives a recurrence relation for the polynomials (.

Theorem 6.1. Let n € N, 0 < k < n, and (i (o, 8) be polynomials defined
by (6.4). Then

an(a, /6) = Cn—l,k—l(aa /B)an—k—l—l + Cn—l,k(aa B)/Bk . (65)

P roof. The proof is analogous to that of Theorems 4.1 and 5.1. We only
note that if Ay and Ay are defined as in the proof of Theorem 4.1, then

Wi(Ao) = Wn1(0G ")) —k-1),  WalA1) = Wyt (0G1)Br -
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Definition 6.2. For every v € N and integer p such that 0 < p < v, we
define the polynomials

G (@, B) = G, p1)
and call them polynomials associated with the polynomials (i (v, B) of rank (v, ).
They are polynomials in variables o, 11,00 py2, ..o, Bus But,
that if 6 = {0;}

.
J=Jjo

... (We recall
00 = {3} 325,-)

1S o sequence and | is a nonnegative integer, then we denote
We consider a particular case. Let
ap=10—1foralll >1, Br=k+1forall k>0.

We obtain a set of numbers Cpp, := G ({1 — 132 {k+1}132,), n € No, 0 <k <mn,
such that

5nk: = 5n—1,k:—1 : (n - k) + gn—l,k : (k + 1) )

(6.6)
and 500 =1, {‘nk = 0 whenever k£ < 0 or £ > n. These numbers are called Fuler

numbers and are denoted by <Z> (see (6.1)). By (1.3) and (6.6), the following
theorem holds.
Theorem 6.2. Letn € N and 0 < k <n. Then

n _ n
(1) =Wal0(2)). (6.7)
where the weight W, on Q, is generated by the sequences a = {l —1}7°,, f =
{k +1}32, by means of (6.2), (6.3), and (4.5)

The following theorem is an analogue of Theorems 4.4 and 5.3.

Theorem 6.3. 1) If n,m € Ny, 0 < m < n, then

(0 5 (1 oo

2) If n,m € Ny, then

(Y =S

(6.9)
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Proof Foralll=m,m+1,...,nand k=0,1,...,m we introduce the
sets F; and Hj in the same way as in the proof of Theorem 4.4. By Theorem 6.2
we have

W) = Wees 00, Doy = (7 Y= m)m 17

Wosms1(Hi) = Wass (0G0t = ("3 ) (b i+ s

The theorem is now immediate. ]

Theorem 6.4. 1) If n,m € N, 1 <m <n, then

- > <”_j 1>(j+1’1). (6.10)

2) If nym,v € Ng, 0<m <n, 1 <v<n-—1, then

Y= (nT 61y

k=0

Pﬂ?

Proof. 1) Justasin the proof of Theorem 4.5, we consider the sets G},
7=0,1,...,m. We have in our case

(6.12)

n—j—1 (j+1,1)
m—1 '

Wa(Gs) = Bl WU D (1)) = <

2) As in the proof of the second proposition of Theorem 4.5, we consider the
sets R, k=0,1,2,...,v. In our case we have

= D WalBi) = 3 WL (0() W) (0, )
k=0 k=0

v L\ )
I

k=0
|

Remark 6.2. Itiseasy to generalize Theorems 6.3 and 6.4 to the case of
arbitrary sequences {«;} and {3;}.
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