Matematicheskaya fizika, analiz, geometriya 2005, v. 12, No. 1, p. 114-118

Short Notes

D'Alembert-Liouville-Ostrogradskii formula and related results

I. Roitberg

Chair of Mathematical Analysis, Chernigov State Pedagogical University 53 Getmana Polubotka, Chernigov, 14013, Ukraine

E-mail:i_roitberg@yahoo.com

A. Sakhnovich

Branch of Hydroacoustics, Marine Institute of Hydrophysics National Academy of Sciences of Ukraine 3 Preobrazhenskaya, Odessa, 65026, Ukraine E-mail:al_sakhnov@yahoo.com

> Received June 30, 2004 Communicated by F.S. Rofe-Beketov

Results, that generalize previous important results of the d'Alembert Liouville-Ostrogradskii formula type by F.S. Rofe-Beketov, are obtained. The 2p - 2p fundamental solution of the rst order system is recovered by its 2p-^p block Y0. Applications to the asymptotics of the continuous analogs of polynomial kernels and to the pseudo-Hermitian quantum mechanics are treated. Similar to the F.S. Rofe-Beketov results the invertibility of the p-^p blocks of Y_0 on the interval is not required.

Introduction $\mathbf{1}$.

Suppose y_0 satisfies Sturm–Liouville equation $-y'' + qy = \lambda y$ $(y' = \frac{dy}{dx})$. Then the well-known D'Alembert-Liouville-Ostrogradskii formula

$$
y(x) = y_0(x) \int\limits_0^x y_0(\xi)^{-2} d\xi
$$

gives another solution of the SturmLiouville equation. (See [2] for this formula and its matrix generalization.) Further developments and interesting applications

^c I. Roitberg and A. Sakhnovich, 2005

Mathematics Subject Classification 2000: 34A30, 34D05, 81Q99.

to the spectral theory have been obtained in $[4-6]$ and references therein. Two separate cases have been treated by F.S. Rofe-Beketov in $[4-6]$: canonical system

$$
w'(x,\lambda) = i\lambda J H(x)w(x,\lambda) \quad (\lambda = \overline{\lambda}, \quad H = H^*, \quad J = \begin{bmatrix} 0 & I_p \\ I_p & 0 \end{bmatrix}) \tag{1.1}
$$

with $m \times m$ Hamiltonian H, and non-self-adjoint system

$$
w'(x,\lambda) = G(x,\lambda)w(x,\lambda) \tag{1.2}
$$

with 2×2 matrix function G. Here $m = 2p$ and I_p is $p \times p$ identity matrix. It is essential to mention that the invertibility of given y_0 (or $p\times p$ block of the fundamental solution w) on the interval that is required in the initial $D'A$ lembert-Liouville–Ostrogradskii formula (1) (or subsection 4.3 [2]) is not required in the formulas in $[4-6]$ anymore.

In this note we shall consider a slightly more general first order system that includes systems (1.1) and (1.2) as well as a class of pseudo-Hermitian systems of m equations, in particular. Applications to the asymptotics of the continuous analogs of polynomial kernels and to the pseudo-Hermitian quantum mechanics will be treated. Similar to the F.S. Rofe-Beketov results the invertibility of the $p\times p$ block of the given $2p\times p$ solution on the interval is not required.

We denote by $\mathbb R$ the real axis and by $\overline{\lambda}$ the complex conjugate to λ scalar (or the matrix with the complex conjugate entries).

The authors are grateful to F.S. Rofe-Beketov for introduction to this topic and very fruitful discussion.

$2.$ Main theorem

Theorem 2.1. Suppose $m \times p$ ($m = 2p$) matrix functions Y_0 and Y_0 satisfy systems

$$
Y'_0(x,\lambda) = G(x,\lambda)Y_0(x,\lambda), \quad \widetilde{Y}'_0(x,\lambda) = \widetilde{G}(x,\lambda)\widetilde{Y}_0(x,\lambda), \qquad (2.1)
$$

where G and G are $m \times m$ locally summable matrix functions. Fix also an absolutely continuous $m \times m$ matrix function $D(x)$ and suppose additionally that

$$
\det Y_0^* Y_0 \neq 0, \quad \det \tilde{Y}_0^* D \tilde{Y}_0 \neq 0, \quad \tilde{Y}_0^* Y_0 \equiv 0. \tag{2.2}
$$

 \overline{I} is the matrix function to the matrix function of \overline{I}

$$
Y(x,\lambda) = Y_0(x,\lambda)g_0(x,\lambda) + D(x)\widetilde{Y}_0(x,\lambda)\widetilde{g}_0(x,\lambda), \qquad (2.3)
$$

where $p\times p$ matrix functions g_0 and g_0 are given by the equations

$$
\widetilde{g}'_0 + (\widetilde{Y}_0^* D \widetilde{Y}_0)^{-1} \widetilde{Y}_0^* (D' + D \widetilde{G} - GD) \widetilde{Y}_0 \widetilde{g}_0 = 0, \qquad (2.4)
$$

Matematicheskaya fizika, analiz, geometriya , 2005, v. 12, No. 1 115

$$
g_0' + (Y_0^* Y_0)^{-1} Y_0^* \left((D' + D\widetilde{G} - GD)\widetilde{Y}_0 \widetilde{g}_0 + D\widetilde{Y}_0 \widetilde{g}_0' \right) = 0, \qquad (2.5)
$$

 s utistics the thist sustem in (2.1) also.

$$
Y'(x,\lambda) = G(x,\lambda)Y(x,\lambda).
$$
 (2.6)

P r o o f. The proof is straightforward. Indeed, by (2.1) and (2.3) we have $Y' = G Y_0 g_0 + Y_0 g'_0 + (D Y_0 \widetilde{g}_0)' = G Y + (D' + D G - G D) Y_0 \widetilde{g}_0 + D Y_0 \widetilde{g}'_0 + Y_0 g'_0.$ Therefore (2.6) is equivalent to the equality

$$
(D' + D\widetilde{G} - GD)\widetilde{Y}_0\widetilde{g}_0 + D\widetilde{Y}_0\widetilde{g}'_0 + Y_0g'_0 = 0.
$$
\n(2.7)

In view of the first and second relations in (2.2) we have det $Z \neq 0$, where

$$
Z(x,\lambda) := \left[\begin{array}{c} \widetilde{Y}_0(x,\lambda)^* \\ Y_0(x,\lambda)^* \end{array} \right].
$$
 (2.8)

So we multiply both sides of (2.7) by Z and taking into account the third relation in (2.2) we see that (2.7) is equivalent to the equations (2.4) and (2.5) . Thus (2.6) holds. Е

3. Examples

3.1. In the Subsections 3.1, 3.2 we shall consider a particular case

$$
D = I_m, \quad \widetilde{G}(x,\lambda) = -G(x,\lambda)^*, \quad \widetilde{Y}_0(0)^* Y_0(0) = 0. \tag{3.1}
$$

Corollary 3.1. Suppose G and \widetilde{G} are locally summable in the interval $\Gamma \subseteq \mathbb{R}$ $(0 \in \Gamma)$. Let equalities (2.1) and (3.1) hold and assume that

$$
\det Y_0(0)^* Y_0(0) \neq 0, \quad \det Y_0(0)^* Y_0(0) \neq 0. \tag{3.2}
$$

 \overline{I} relativity from a matrix function function function function function function function function function \overline{I}

$$
Y(x,\lambda) = Y_0(x,\lambda)g_0(x,\lambda) + \widetilde{Y}_0(x,\lambda)\widetilde{g}_0(x,\lambda), \qquad (3.3)
$$

where

$$
\widetilde{g}_0(x,\lambda) = \left(\widetilde{Y}_0(x,\lambda)^* \widetilde{Y}_0(x,\lambda)\right)^{-1}, \quad g_0(x,\lambda) = \int_0^x \left(Y_0(\xi,\lambda)^* Y_0(\xi,\lambda)\right)^{-1}
$$

$$
\times Y_0(\xi,\lambda)^* \left(G(\xi,\lambda) - \widetilde{G}(\xi,\lambda)\right) \widetilde{Y}_0(\xi,\lambda) \left(\widetilde{Y}_0(\xi,\lambda)^* \widetilde{Y}_0(\xi,\lambda)\right)^{-1} d\xi, \tag{3.4}
$$

satisfies (2.6) .

116 Matematicheskaya fizika, analiz, geometriya , 2005, v. 12, No. 1

P r o o f. The first two relations in (2.2) are immediate from (2.1) and (3.2) . From (2.1) and the second relation in (3.1) it follows that $(Y_0^*Y_0)' \equiv 0$. So in view of the third relation in (3.1) we get the third relation in (2.2) . Therefore the conditions of Theorem 2.1 are fulfilled. As $D = I_m$ and $-G = \tilde{G}^*$ one easily checks that \widetilde{g}_0 given by (3.4) satisfies (2.4). Using this and $Y_0^*Y_0 \equiv 0$, we derive that g_0 given by (3.4) satisfies (2.5). Hence Y constructed in this corollary satisfies conditions of Theorem 2.1, i.e., equality (2.6) is proved.

Corollary 3.1 includes the case of system (1.1). In this case we assume

$$
Y_0(0)^* Y_0(0) > 0, \quad Y_0(0)^* J Y_0(0) = 0. \tag{3.5}
$$

According to the second relation in (3.1) and (3.5) we can put here $Y_0 = JY_0$. For the canonical system with $H \geq 0$ and $\Im \lambda < 0$ the asymptotics of the forms $Z(x,\lambda)JZ(x,\lambda)^*$ (analogs of the polynomial kernels) have been studied in [7]. The asymptotics of Z in the almost periodic case is based on formula (3.3) (see Theorem 6.2 [6]). From Theorem 6.2 [6] follows

Corollary 3.2. Suppose Hamiltonian H and $m \times p$ solution Y_0 of system (1.1) are uniformly almost periodic on $\mathbb R$ and (3.5) holds. Then for Z of the form (2.8), $\lambda = \overline{\lambda}$ and $|x| \to \infty$ we have

$$
Z(x,\lambda)JZ(x,\lambda)^*
$$

$$
= T(x,\lambda) \begin{bmatrix} Y_0(x,\lambda)^* Y_0(x,\lambda) & 0 \\ 0 & (Y_0(x,\lambda)^* Y_0(x,\lambda))^{-1} \end{bmatrix} T(x,\lambda), \qquad (3.6)
$$

where $T(x,\lambda) = \begin{bmatrix} (K(\lambda) + o(1))x & I_p \\ I_p & 0 \end{bmatrix},$

$$
K(\lambda) = K(\lambda)^* = \lim_{|x| \to \infty} x^{-1} g_0(x,\lambda).
$$

3.2. Non-self-adjoint PT-symmetric and pseudo-Hermitian systems are actively studied last years following the important paper [1] (see further references in [3, 8]). Operator H is called pseudo-Hermitian if $H^{\pm} = \eta H \eta^{-1}$, where operator η is a Hermitian invertible linear operator [3]. Putting $\eta = CP,$ where $C=C^*$ is $m \times m$ matrix and $(Pf)(x) = f(-x)$, we see that system

$$
w'(x) = i\lambda H(x)w(x,\lambda) \quad (x \in \mathbb{R}, \quad \lambda = \overline{\lambda})
$$
\n(3.7)

is pseudo-Hermitian if the locally summable $m \times m$ matrix function H satisfies equality

$$
H(x)^* = -CH(-x)C^{-1}.
$$
\n(3.8)

Matematicheskaya fizika, analiz, geometriya , 2005, v. 12, No. 1 117

Corollary 3.3. Suppose $m \times p$ matrix function Y_0 satisfies pseudo-Hermitian system (3.7), (3.8) and relations

$$
Y_0(0)^* Y_0(0) > 0, \quad Y_0(0)^* C Y_0(0) = 0 \qquad (3.9)
$$

hold. Put also be a put also be a put also be a put of the put of the put and the put of the put of the put of

$$
\widetilde{Y}_0(x,\lambda) = CY_0(-x,\lambda). \tag{3.10}
$$

Then the conditions of Corol lary 3.1 are satised.

3.3. If system (1.2) with 2×2 matrix function G is given, we put in Theorem 2.1 $p = 1$,

$$
\widetilde{G} = jJ\overline{G}Jj, \quad \widetilde{Y}_0 = jJ\overline{Y}_0,
$$
\n(3.11)

$$
j = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad D(x) = \begin{bmatrix} 1 & 0 \\ 0 & \varphi(x) \end{bmatrix}.
$$
 (3.12)

Equality $Y_0^* Y_0 \equiv 0$ is now fulfilled automatically, and Theorem 6.6 [6] follows. System (1.1) includes the case of the self-adjoint Sturm-Liouville system and system (1.2) includes non-self-adjoint Sturm-Liouville scalar equation. D'Alembert-Liouville–Ostrogradskii formula for the Sturm–Liouville case may prove useful to judge on the existence of the subordinate solutions in the framework of the Gilbert-Pearson theory.

References

- [1] C.M. Bender and S. Bottcher, Real spectra in non-Hermitian Hamiltonians having PT -symmetry. $-$ Phys. Rev. Lett. (1998), v. 80, p. 5243–5246.
- [2] P. Hartman, Ordinary differential equations. John Wiley and Sons, New York-London-Sydney (1964).
- [3] A. Mostafazadeh, Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians. $-$ *Nucl. Phys.* (2002), v. 640, p. 419–434.
- [4] F.S. Rofe-Beketov, Kneser constants and effective masses for band potentials. $-$ Dokl. AN SSSR (1984), v. 276, c. 356–359. (Translated in: Sov. Phys., Dokl. (1984), v. 29, p. 391 -393).
- [5] F.S. Rofe-Beketov, On the estimate of growth of solutions of the canonical almost periodic systems. $-Mat.$ $\it{fiz.}$, analiz, geom. (1994), v. 1, No. 1, p. 139–148. (Russian)
- [6] F.S. Rofe-Beketov and A.M. Hol'kin, Spectral analysis of differential operators. $-$ PSTU, Mariupol (2001). (Russian)
- [7] $A.L. Sakhnovich, Spectral functions of the canonical systems of the $2n$ -th order.$ $M_{at.}$ Sb. (1990), v. 181, No. 11, c. 1510–1524. (Translated in: *Math. USSR Sb.* (1992) , v. 71, No. 2, p. 355-369).
- [8] A.L. Sakhnovich, Non-Hermitian matrix Schrödinger equation: Bäcklund-Darboux transformation, Weyl functions, and \mathcal{PT} symmetry. $-$ J. Phys. (2003), v. A 36, p. 7789–7802.