Matematicheskaya fizika, analiz, geometriya 2005, v. 12, No. 1, p. 114–118 Short Notes

D'Alembert–Liouville–Ostrogradskii formula and related results

I Roitberg

Chair of Mathematical Analysis, Chernigov State Pedagogical University 53 Getmana Polubotka, Chernigov, 14013, Ukraine

 $E\text{-mail:}i_roitberg@yahoo.com$

A. Sakhnovich

Branch of Hydroacoustics, Marine Institute of Hydrophysics National Academy of Sciences of Ukraine 3 Preobrazhenskaya, Odessa, 65026, Ukraine E-mail:al_sakhnov@yahoo.com

> Received June 30, 2004 Communicated by F.S. Rofe-Beketov

Results, that generalize previous important results of the d'Alembert– Liouville–Ostrogradskii formula type by F.S. Rofe-Beketov, are obtained. The $2p \times 2p$ fundamental solution of the first order system is recovered by its $2p \times p$ block Y_0 . Applications to the asymptotics of the continuous analogs of polynomial kernels and to the pseudo-Hermitian quantum mechanics are treated. Similar to the F.S. Rofe-Beketov results the invertibility of the $p \times p$ blocks of Y_0 on the interval is not required.

1. Introduction

Suppose y_0 satisfies Sturm-Liouville equation $-y'' + qy = \lambda y \ (y' = \frac{dy}{dx})$. Then the well-known D'Alembert-Liouville-Ostrogradskii formula

$$y(x) = y_0(x) \int_0^x y_0(\xi)^{-2} d\xi$$

gives another solution of the Sturm-Liouville equation. (See [2] for this formula and its matrix generalization.) Further developments and interesting applications

© I. Roitberg and A. Sakhnovich, 2005

Mathematics Subject Classification 2000: 34A30, 34D05, 81Q99.

to the spectral theory have been obtained in [4-6] and references therein. Two separate cases have been treated by F.S. Rofe-Beketov in [4-6]: canonical system

$$w'(x,\lambda) = i\lambda JH(x)w(x,\lambda) \quad (\lambda = \overline{\lambda}, \quad H = H^*, \quad J = \begin{bmatrix} 0 & I_p \\ I_p & 0 \end{bmatrix})$$
(1.1)

with $m \times m$ Hamiltonian H, and non-self-adjoint system

$$w'(x,\lambda) = G(x,\lambda)w(x,\lambda) \tag{1.2}$$

with 2×2 matrix function G. Here m = 2p and I_p is $p \times p$ identity matrix. It is essential to mention that the invertibility of given y_0 (or $p \times p$ block of the fundamental solution w) on the interval that is required in the initial D'Alembert–Liouville–Ostrogradskii formula (1) (or subsection 4.3 [2]) is not required in the formulas in [4–6] anymore.

In this note we shall consider a slightly more general first order system that includes systems (1.1) and (1.2) as well as a class of pseudo-Hermitian systems of m equations, in particular. Applications to the asymptotics of the continuous analogs of polynomial kernels and to the pseudo-Hermitian quantum mechanics will be treated. Similar to the F.S. Rofe-Beketov results the invertibility of the $p \times p$ block of the given $2p \times p$ solution on the interval is not required.

We denote by \mathbb{R} the real axis and by $\overline{\lambda}$ the complex conjugate to λ scalar (or the matrix with the complex conjugate entries).

The authors are grateful to F.S. Rofe-Beketov for introduction to this topic and very fruitful discussion.

2. Main theorem

Theorem 2.1. Suppose $m \times p$ (m = 2p) matrix functions Y_0 and \widetilde{Y}_0 satisfy systems

$$Y_0'(x,\lambda) = G(x,\lambda)Y_0(x,\lambda), \quad \widetilde{Y}_0'(x,\lambda) = \widetilde{G}(x,\lambda)\widetilde{Y}_0(x,\lambda), \quad (2.1)$$

where G and \widetilde{G} are $m \times m$ locally summable matrix functions. Fix also an absolutely continuous $m \times m$ matrix function D(x) and suppose additionally that

det
$$Y_0^* Y_0 \neq 0$$
, det $Y_0^* D Y_0 \neq 0$, $Y_0^* Y_0 \equiv 0$. (2.2)

Then the matrix function

$$Y(x,\lambda) = Y_0(x,\lambda)g_0(x,\lambda) + D(x)\widetilde{Y}_0(x,\lambda)\widetilde{g}_0(x,\lambda), \qquad (2.3)$$

where $p \times p$ matrix functions g_0 and \tilde{g}_0 are given by the equations

$$\widetilde{g}_0' + (\widetilde{Y}_0^* D \widetilde{Y}_0)^{-1} \widetilde{Y}_0^* (D' + D \widetilde{G} - G D) \widetilde{Y}_0 \widetilde{g}_0 = 0, \qquad (2.4)$$

Matematicheskaya fizika, analiz, geometriya, 2005, v. 12, No. 1 115

$$g_0' + (Y_0^* Y_0)^{-1} Y_0^* \left((D' + D\widetilde{G} - GD) \widetilde{Y}_0 \widetilde{g}_0 + D\widetilde{Y}_0 \widetilde{g}_0' \right) = 0, \qquad (2.5)$$

satisfies the first system in (2.1) also:

$$Y'(x,\lambda) = G(x,\lambda)Y(x,\lambda).$$
(2.6)

P r o o f. The proof is straightforward. Indeed, by (2.1) and (2.3) we have $Y' = GY_0g_0 + Y_0g'_0 + (D\widetilde{Y}_0\widetilde{g}_0)' = GY + (D' + D\widetilde{G} - GD)\widetilde{Y}_0\widetilde{g}_0 + D\widetilde{Y}_0\widetilde{g}_0' + Y_0g'_0.$ Therefore (2.6) is equivalent to the equality

$$(D' + D\tilde{G} - GD)\tilde{Y}_0\tilde{g}_0 + D\tilde{Y}_0\tilde{g}'_0 + Y_0g'_0 = 0.$$
(2.7)

In view of the first and second relations in (2.2) we have det $Z \neq 0$, where

$$Z(x,\lambda) := \begin{bmatrix} \widetilde{Y}_0(x,\lambda)^* \\ Y_0(x,\lambda)^* \end{bmatrix}.$$
 (2.8)

So we multiply both sides of (2.7) by Z and taking into account the third relation in (2.2) we see that (2.7) is equivalent to the equations (2.4) and (2.5). Thus (2.6) holds.

3. Examples

3.1. In the Subsections 3.1, 3.2 we shall consider a particular case

$$D = I_m, \quad \tilde{G}(x,\lambda) = -G(x,\lambda)^*, \quad \tilde{Y}_0(0)^* Y_0(0) = 0.$$
(3.1)

Corollary 3.1. Suppose G and \widetilde{G} are locally summable in the interval $\Gamma \subseteq \mathbb{R}$ $(0 \in \Gamma)$. Let equalities (2.1) and (3.1) hold and assume that

det
$$Y_0(0)^* Y_0(0) \neq 0$$
, det $Y_0(0)^* Y_0(0) \neq 0$. (3.2)

Then relations (2.2) hold and matrix function

$$Y(x,\lambda) = Y_0(x,\lambda)g_0(x,\lambda) + \widetilde{Y}_0(x,\lambda)\widetilde{g}_0(x,\lambda), \qquad (3.3)$$

where

$$\widetilde{g}_{0}(x,\lambda) = \left(\widetilde{Y}_{0}(x,\lambda)^{*}\widetilde{Y}_{0}(x,\lambda)\right)^{-1}, \quad g_{0}(x,\lambda) = \int_{0}^{x} \left(Y_{0}(\xi,\lambda)^{*}Y_{0}(\xi,\lambda)\right)^{-1} \times Y_{0}(\xi,\lambda)^{*} \left(G(\xi,\lambda) - \widetilde{G}(\xi,\lambda)\right) \widetilde{Y}_{0}(\xi,\lambda) \left(\widetilde{Y}_{0}(\xi,\lambda)^{*}\widetilde{Y}_{0}(\xi,\lambda)\right)^{-1} d\xi, \quad (3.4)$$

satisfies (2.6).

Matematicheskaya fizika, analiz, geometriya , 2005, v. 12, No. 1

116

P r o o f. The first two relations in (2.2) are immediate from (2.1) and (3.2). From (2.1) and the second relation in (3.1) it follows that $(\tilde{Y}_0^*Y_0)' \equiv 0$. So in view of the third relation in (3.1) we get the third relation in (2.2). Therefore the conditions of Theorem 2.1 are fulfilled. As $D = I_m$ and $-G = \tilde{G}^*$ one easily checks that \tilde{g}_0 given by (3.4) satisfies (2.4). Using this and $Y_0^*\tilde{Y}_0 \equiv 0$, we derive that g_0 given by (3.4) satisfies (2.5). Hence Y constructed in this corollary satisfies conditions of Theorem 2.1, i.e., equality (2.6) is proved.

Corollary 3.1 includes the case of system (1.1). In this case we assume

$$Y_0(0)^* Y_0(0) > 0, \quad Y_0(0)^* J Y_0(0) = 0.$$
 (3.5)

According to the second relation in (3.1) and (3.5) we can put here $\tilde{Y}_0 = JY_0$. For the canonical system with $H \ge 0$ and $\Im \lambda < 0$ the asymptotics of the forms $Z(x,\lambda)JZ(x,\lambda)^*$ (analogs of the polynomial kernels) have been studied in [7]. The asymptotics of Z in the almost periodic case is based on formula (3.3) (see Theorem 6.2 [6]). From Theorem 6.2 [6] follows

Corollary 3.2. Suppose Hamiltonian H and $m \times p$ solution Y_0 of system (1.1) are uniformly almost periodic on \mathbb{R} and (3.5) holds. Then for Z of the form (2.8), $\lambda = \overline{\lambda}$ and $|x| \to \infty$ we have

$$Z(x,\lambda)JZ(x,\lambda)^*$$

$$= T(x,\lambda) \begin{bmatrix} Y_0(x,\lambda)^* Y_0(x,\lambda) & 0\\ 0 & (Y_0(x,\lambda)^* Y_0(x,\lambda))^{-1} \end{bmatrix} T(x,\lambda), \quad (3.6)$$

where $T(x,\lambda) = \begin{bmatrix} (K(\lambda) + o(1))x & I_p\\ I_p & 0 \end{bmatrix},$
 $K(\lambda) = K(\lambda)^* = \lim_{|x| \to \infty} x^{-1} g_0(x,\lambda).$

3.2. Non-self-adjoint PT-symmetric and pseudo-Hermitian systems are actively studied last years following the important paper [1] (see further references in [3, 8]). Operator \mathcal{H} is called pseudo-Hermitian if $\mathcal{H}^* = \eta \mathcal{H} \eta^{-1}$, where operator η is a Hermitian invertible linear operator [3]. Putting $\eta = CP$, where $C = C^*$ is $m \times m$ matrix and (Pf)(x) = f(-x), we see that system

$$w'(x) = i\lambda H(x)w(x,\lambda) \quad (x \in \mathbb{R}, \quad \lambda = \overline{\lambda})$$
 (3.7)

is pseudo-Hermitian if the locally summable $m \times m$ matrix function H satisfies equality

$$H(x)^* = -CH(-x)C^{-1}.$$
(3.8)

Matematicheskaya fizika, analiz, geometriya, 2005, v. 12, No. 1 117

Corollary 3.3. Suppose $m \times p$ matrix function Y_0 satisfies pseudo-Hermitian system (3.7), (3.8) and relations

$$Y_0(0)^* Y_0(0) > 0, \quad Y_0(0)^* C Y_0(0) = 0$$
(3.9)

hold. Put also

$$\widetilde{Y}_0(x,\lambda) = CY_0(-x,\lambda). \tag{3.10}$$

Then the conditions of Corollary 3.1 are satisfied.

3.3. If system (1.2) with 2×2 matrix function G is given, we put in Theorem 2.1 p = 1,

$$\widetilde{G} = j J \overline{G} J j, \quad \widetilde{Y}_0 = j J \overline{Y}_0,$$
(3.11)

$$j = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad D(x) = \begin{bmatrix} 1 & 0 \\ 0 & \varphi(x) \end{bmatrix}.$$
(3.12)

Equality $\widetilde{Y}_0^*Y_0 \equiv 0$ is now fulfilled automatically, and Theorem 6.6 [6] follows. System (1.1) includes the case of the self-adjoint Sturm-Liouville system and system (1.2) includes non-self-adjoint Sturm-Liouville scalar equation. D'Alembert-Liouville-Ostrogradskii formula for the Sturm-Liouville case may prove useful to judge on the existence of the subordinate solutions in the framework of the Gilbert-Pearson theory.

References

- C.M. Bender and S. Böttcher, Real spectra in non-Hermitian Hamiltonians having *PT*-symmetry. — Phys. Rev. Lett. (1998), v. 80, p. 5243–5246.
- [2] P. Hartman, Ordinary differential equations. John Wiley and Sons, New York-London-Sydney (1964).
- [3] A. Mostafazadeh, Pseudo-supersymmetric quantum mechanics and isospectral pseudo-Hermitian Hamiltonians. — Nucl. Phys. (2002), v. 640, p. 419–434.
- [4] F.S. Rofe-Beketov, Kneser constants and effective masses for band potentials. Dokl. AN SSSR (1984), v. 276, c. 356–359. (Translated in: Sov. Phys., Dokl. (1984), v. 29, p. 391–393).
- [5] F.S. Rofe-Beketov, On the estimate of growth of solutions of the canonical almost periodic systems. — Mat. fiz., analiz, geom. (1994), v. 1, No. 1, p. 139–148. (Russian)
- [6] F.S. Rofe-Beketov and A.M. Hol'kin, Spectral analysis of differential operators. PSTU, Mariupol (2001). (Russian)
- [7] A.L. Sakhnovich, Spectral functions of the canonical systems of the 2n-th order.
 Mat. Sb. (1990), v. 181, No. 11, c. 1510–1524. (Translated in: Math. USSR Sb. (1992), v. 71, No. 2, p. 355–369).
- [8] A.L. Sakhnovich, Non-Hermitian matrix Schrödinger equation: Bäcklund-Darboux transformation, Weyl functions, and *PT* symmetry. — J. Phys. (2003), v. A 36, p. 7789–7802.

118