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We prove existence of a compact global attractor of finite fractal dimen-
sion and existence of a finite set of asymptotically determining functionals
for a retarded PDE system for a von Kdarmén plate with thermal effects in
the flow of gas. Moreover, we show that asymptotical dynamics of the en-
tire system is determined by the dynamics of the single component u, which
describes displacement of the plate.

1. Introduction

Nonlinear oscillations of a clamped plate in the presence of thermal effects can
be described by the following equations:

Pyuy + (€1 — e2A)uy + A%y — [u,v +n] + A0 = p(x,t), =z €, (1)

0, — A — Auy = 0, (2)
ou
ulyq = oy, = 0]yq =0, (3)

where v = v(u) is Airy’s stress function defined by

ov

A2 - — - — = 4
v [U,U], v|3Q on 0’ ( )

o0

Q2 is a smooth bounded domain in R?, n is the outward unit normal vector to 052,
A is the Laplace operator, P, = (1 —aA). The von Kdarmén brackets are defined
by [u,v] = 82 u- 02,0+ 02, u- 02 v— 202 ,,u- 0%, v. The function u = u(z,t)
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describes transverse displacement of the plate, the function 6 = 6(x,t) denotes
the temperature; n(z) € H*(Q) is a given function determined by mechanical
loads. The parameter a > 0 accounts for rotational inertia. The parameters
€1 > 0, e2 > 0 account for mechanical dissipation.

If the plate is located in a supersonic gas flow (U > 1) that moves in the
direction of the zi-axis with the velocity U > 1, then aerodynamic pressure on
the plate can be described by (see, e.g., [1], and also [2, 3])

p(z,t) = po = v (ur + Udr,u + q(u, 2,1)) , (5)
where
] 0 2
q(u,z,t) = Py / ds/dH[Mgﬂ](ml — (U +sinf)s,z9 — scosB,t — s). (6)
T
S0

Here @ is the extension of u(z,t) that vanishes outside Q, My = sinf-9,, + cosf -
Or,-

Thus, we have a nonlinear PDE system with the time delay ¢t* = /(U — 1),
where [ is a size of €2 in the direction of the x;-axis. Therefore initial conditions
must be chosen in the form

U(O) = Up, ut(o) = u1, 9(0) = 007 u|(7t*,0) = ¢o- (7)

It was shown in [2] that the problem (1)—(7) also describes the plate in a sub-
sonic gas flow (0 < U < 1). In this case the time delay is defined by t* = inf{¢ :
(1 — (U + sinf)s, zo — scos ) ¢ Q for all (z1,29) € Q, 6 € [0,27], s > t}.

Similar problems were studied in [3-5]. An isothermal variant of the problem
(1)—(7) was considered in [3]. Rotational inertia of elements of a plate was taken
into account, i.e., a, €s > 0. Existence of a compact global attractor and finiteness
of number of essential modes were proved for that problem.

Nonlinear oscillations of a plate in the Berger approach without thermal effects
were studied in [4, 5]. The transversal load on the plate was described by the
same term as in [3|, but rotational inertia was neglected there, i.e., a = €2 = 0.
Existence of a compact global attractor, it’s finite dimensionality, and finiteness
of number of essential modes were proved for this problem. Note, that we can use
the same method as in [4]| to prove finite dimensionality of the attractor of the
problem considered in [3].

Another approach to the problem of aeroelastisity is considering of a coupled
PDEs systems, in which the first equation describes displacement of a plate and
the second describes a flow of gas moving over the plate. The detailed survey
of results and unsolved problems, concerning such systems, is given in [6]. In
particular, a stabilization result for the entire system (plate + gas) in the case
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of subsonic flow (0 < U < 1) and structural dissipation (i.e., the damping term
has the form (e; — e2A)uy) is stated there. It is claimed that every trajectory of
the entire system tends to the set of fixed points of the problem. The thermo-
elastic variant of the abovementioned problem without mechanical dissipation is
considered in [7], where stabilization result of the same type is obtained.

In the present paper we use ideas and methods from [3] to prove existence of
a compact global attractor for the problem (1)—(7) and results from [8] to prove
it’s finite dimensionality in the case «, eo > 0. It is also proved that there exist
a finite set of determining functionals for the problem (1)—(7). The important
result is that the dynamics of the entire system is asymptotically determined by
the dynamics of the single component u(¢). Whether these results are true in
the case € = e = 0 (i.e., without mechanical dissipation), is an open question.
The main difficulty in this case is to prove dissipativity of the system.

2. Existence and uniqueness of a solution

We will denote the norm in the Sobolev space H*(2) by ||-||s and the norm
and the scalar product in L2(Q2) by ||-|| and (-,-), respectively. In this paper
we will use the following functional spaces: H = H2(Q) x H (Q) x L?(Q2) with the
norm ||(uo, u1,00)|[3, = [luoll3 + [Jurl[f + (160l F = H x L*(—t*,0; HF (Q)) with
the norm |(uo,us, 8o, do(r)) 13 = |I(uosur. 60) 13 + [° llfo(r)|3drs Wr =
{(u,0) : u(z,t) € L®(—t*,T; H3(Q)), u(w,t) € L®(0,T; H}(Q)),0(z,t) € L®
(0,7; L%(2))}. We also define the equivalent scalar product in H(Q): (u,v)1,4 =
(u,v) + a(Vu, Vu). We will assume that initial data (ug,u1, 6o, po) € F.

Definition 1. Function (u(t),6(t)) is sad to be a weak solution to the problem
(1)-(7) if (u(t),0(t)) € Wr, it satisfies (1)-(6) in the sense of distributions and
initial conditions (7) hold.

To prove existence and uniqueness of a weak solution we need the following
estimate for the retarded term q(u,z,t).

Lemma 1. Let u(t) € L*(—t*,T; H2(Q)). Then

t
lla(u, )|I7 < Ct* / ()|, 5=0,-1, t€[0,T]. (8)

t—t*

It was shown in [2] that using change of variables we can reduce the retarded
term (6) to the form used in [3], where the estimate (8) was proved.
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Theorem 1 (existence and uniqueness of a weak solution). Let Wy =
(ug,u1,00,p0) € F. Then for every interval (0,T) there exists a unique weak solu-
tion (u(t),0(t)) to the problem (1)-(7) with the initial conditions Wy. Moreover,
y(t) = (u(t),uw(t),0(t)) € C0,T;H), 6(t) € L*(0,T;H(R)), and the energy
equality holds:

E(y(t)) = +/{ er + V) [ug(7)]|? = e2| [V (7)| P = |[VO(7)[|?
0
—Uv(0p,u(r), ue(1)) — vig(u, =, 7),u (7))} dr, (9)
where
1

B(y(1)) = Bo(y(t)) — » (), ut)).n) — (po, (e,
Folu(@) = 5 (1l + allTuell + [Auo] + FIAu(u)I + [6OIF )

IfWi(t) = (uj(t),uz(t),Hj(t),uj(t‘—i— 7)), T € [=t*,0], j = 1,2, are two solutions
to (1)=(7) with the initial data W = (u{],ul,%,tpf)) € F such that ||WJ||7: <R,
then

IWH(t) = W2(t)||x < C(R.T)||Wo — Willr, t<T. (10)

P roof. The proof uses Galerkin’s approximations. As it is standard, we
give only a sketch of the proof. Let {ex} be the orthonormal in H{(f2) basis of

eigenvectors of the problem
ou
A*u = \P,u, ulgq = = 0, (11)

i.e., eigenvectors of the positive self-adjoint operator A defined by (Au,v); =
(Au, Av) with the domain H3(2) () H3(2), and let {\x} be the sequence of eigen-
values of A. Let {e;} and {\;} be eigenvectors and eigenvalues of —A with the
domain H{ () N H2(Q), respectively. We suppose that {&j} are orthonormal in
L?(€2). Assume that approximate solutions of the problem (1)—(7) have the form

= get)er(z), 0"(z,t) = gult)er(z)
k=1 k=1
and satisfy
(Paug; (t), ex) + ((e1 — e28)ui" (), ex) + (Au™(t), Aeg) + (A0 (1), ex)
= (po, ex) + ([u™(2), v(u™ () + 7], ex)
(1) + Uy u™ (1) + q(u™ 2, 1))}, k=1, m,
(oy(t)vék) - (Aom(t)vék) - (Au;n(t)vék) =0, k=1,...,m,
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with the initial conditions
u™(0) = Ppug, uy*(0) = Pruy, 0,(0) = P00, um(T) = Pnyo(r), 7€ [—t*,0],

where P, and P, are projectors on Lin{ey}7", and Lin{eg}7",, respectively.

Similarly as in [9] we can rewrite the system for g, g in integral form and
obtain existence of an approximate solution on some interval (0,7"). Similarly as
in [3|, using Lemma 1 and the estimates for the von Kérman brackets given by
Lemma 1.1 [10], we can establish the energy equality (9) for approximate solutions
and the a priori bound

0
Bo(y" () < |1+ Baly™(0) + [ lw"(r)|Par | ¢ < Cpry e 0.7,
—t*
(12)
This bound and Theorem 2.3.2 form [9] enable us to get continuation of a local
solution on every interval (0,7"). Thus, we obtain a global approximate solution
to (1)—(7). Estimate (12) implies *-weak compactness of {y"(¢)} in L>(0,T;H).
This enables us to prove existence of a solution to (1)-(7). Using the standard
techniques from [11, Ch. 3|, we prove that this solution to (1)-(7) is strong
continuous in H and satisfies the energy equality (9). We prove uniqueness of
a solution using Gronwall’s lemma. In the same way we obtain (10). The proof
of Theorem 1 is now complete.

3. Existence of a global attractor

Due to Theorem 1 we can define a strongly continuous semigroup S; on F by
the formula

St(u(),ul,ﬁo,(pg(s)) = (u(t)vut(t)vg(t)vu(t + S))v s € (—t*,O), t>0,

where (u(t),0(t)) is a weak solution to (1)—(7). For the dynamical system (S, F)
we have the following result.

Theorem 2 (existence of a global attractor). Ife; > 0, then the dynamical
system (Sy, F) possesses a compact global attractor A, i.e., there exists a compact
set A such that S; A = AVt > 0 and

lim sup distz(S;W, A) =0
t—+o00 WEeERB

for every bounded set B C F.

The proof of the theorem follows the well-known scheme (see, e.g., Theorem 5.1
from [12, Ch. 1]): it is sufficient to prove that the semigroup S; is dissipative and
asymptotically compact.
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Lemma 2 (dissipativity). The dynamical system (Sy, F) is dissipative, i.e.,
there exists R > 0 such that for every bounded set B C F there exists to(B) such
that ||SiW ||z < R for all t > to(B) and all W € B.

P roof Similarly as in [3], we use the functional V(y) = E(y) + u®(y)
defined for y € ‘H, where p > 0 and

(I)(y) = (Pauo,ul) —+ 1/2((61 + v — EQA)UO,UO), Yy = (uo,ul, 90) (13)

It is easy to see that for some d > 0 and g > 0 small enough there exist ¢y, ca > 0
such that
ci(1+ Eo(y)) < Valy) < e2(1 + Eo(y)),

where Vi(y) = V(y) + d [10, Lemma 3.2]. After a simple calculation we obtain
that

%Vd(y(t)) < —(er + )l (@)1 = 2l Vur(0)]* = VOO — n(l|Au(t)]]*

HAv(u()) 1)+ 0+ llue (0)[1+4] VO@)|[P+Cul [Vu®)|*+Colla(u, z, )|[F+Cs

for every 0 > 0 and 0 < p < po. Similarly as in [3], we can choose § and p small
enough to obtain the estimate
t*
Eo(y(t)) < Cy+Cy 1+ Eg(y(t")) + /Eo(y(T))dT e Ot >t
0

for some ¢ > 0. This implies the lemma.
Now we introduce the set K = (vg, v1, o, $(s)) C F such that

ool + [fo1]145 + IS0l 35 + eS(S S;urg)(||¢(8)||§+a +l¢s (9)[[140) < A4,
se(—t*,

where 0 < 0 < 1/2, A > 0. Evidently, K9 is compact in F.

Lemma 3 (asymptotical compactness). There exists A > 0 such that for
every bounded set B C F

lim sup distz(S;W,K%) =0, 0<o<1/2.
t—+o0 WEeERB
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Proof. Let T; be the evolution operator corresponding to the linear PDEs
system

Pouy + (€1 — e2A)uy + A%y + A9 = 0, ze€qQ, (14)
0, — AO — Auy =0, (15)

ou
u(0) =uo, w(0) =ur, 6(0) =06, (17)

Similarly as in [10] we prove that 7} is a semigroup of contractions on H3 ™ (Q) x
Hy 7 (Q)x HZ7(Q) = HO for 0 < 0 < 1/2, and ||T}||%s < Me™ . Then a solution
to (1)—(7) can be represented by means of Duhamel’s principle:

(w(t), ue(t),0(t)) = Ty (ug, u1,6p) —l—/Tt r M(u(T))),0)dT,
0

where M (u(7)) = [u,v(u) + 1] + po — v (ut + Udy,u + q(u, z,t)). Without loss
of generality we can assume that initial data lie in the absorbing ball. Then
[|M(u(T))|| =140 < Cr for 0 < o < 1/2. Since ||T}||ye — 0, t — 400, the state-

ment of the lemma holds. Lemmas 2 and 3 implies Theorem 2.

4. Finite dimensionality of the attractor

The following theorem takes place.

Theorem 3 (finite dimensionality of the attractor). If the conditions of
Theorem 2 hold, the attractor A of the dynamical system (S, F) is of finite fractal
dimension.

First we prove a lemma that will be used also in the proof of existence of finite
number of determining functionals.

Lemma 4 (stabilizability inequality). Let (uqi(t),01(t)), (uz(t),02(t)) be
two solutions to (1)-(7) such that ||(u;(0), du;(0),0;(0),u(r))||% < R? 7 €
[—t*,0]. Let w = uy —u9,( =60y — 0. Then

to
|| (w, we, €) (#)|[3, < C(R)e=6E0) | |(w, wy, €) (o) I3, + / |Vw(r)|*dr
to—t*
t
+C(R)/e§(t7)||w(7')||§u, 0<ty<t (18)

to

for some € > 0 and arbitrary 0 < p < 1.
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Proof. Wedenote N(t) = [lwy(t)||7, + [[Aw(®)||* + [|¢(¢)]|* and ®(t) =
O (w(t),w(t),((t)), where @ is defined by (13). It is easy to see that there exists
B > 0 small enough such that

aN(t) < (N + B®)(t) < 2N (t) VE>0 (19)

for some positive c1,co. After a simple calculation we obtain

%(N +B2)(t) = —(er + V) [we()* — el Vur (t)|* = V¢ (D)2
+Bllwe ()T o = BlIAwW* + ([ur, v(ur)] = [uz, v(ua)], we) () + ([w, 0], we)(2)

— vU Oy w, wi) (1) — v(q(u, 2, 1), wi(t) + B([u1, v(u1)] — [ug, v(u2)], w)(?)
+ B([w, nl, w)(t) + BVE, Vw)(t) = vUB(0r,w, w)(t) = fr(q(u, ,t), w(t)). (20)

Due to Lemma 1.1 from [10] the following estimates are valid:

([, v(u1)] = [uz, v(u2)], we)(t) + ([w, 0], we) (t)]

< C(R, e)llw(®)]5-,, + ellwi (t)][F; (21)
|([u1, 0(u)] = [ug, v(u2)], w)(#) + ([w, 9], w)(#)]
< CR)(lw®)I3-, + IVw(®)[]?) (22)

for arbitrary 0 < 4 < 1 and € > 0. Lemma 1 gives that

t

|(q(u, z, 1), wi(t))| < Ce / IV (r)||dr + el fw (8)][3; (23)
tft*t

(q(u, z,1), w(t))| < C ( / IVw(r)||*dr + wt(ﬂ?) (24)
t—t*

for every € > 0. Using Schwartz inequality for the other terms in (20) and choosing
€ and [ small enough, we obtain that for some & > 0

SN+ 5O)(1) + E(N + BB)(1)

t
< C(R) (w(t)%u + / Vw(T)ZdT) , 0<p<l

t—t*
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Multiplying this inequality by et!, integrating from ¢q to ¢, and changing order of
variables in the integral term, we obtain
(N + B®)(t) < e S0 (N + B2)(to)
to t
+C(R) [ e €010 / ||Vw(7)||2dT + / e S Jw(r)|[3_,dr
to—t* to
Applying (19) to the last estimate, we finish the proof of the lemma.
The proof of finite dimensionality of the attractor of the problem (1)-(7) is

based on the idea from [8]. For convenience we list the definition and the theorem
we need bellow.

Definition 2. Let X be a separable Hilbert space. A seminorm n(x) is said
to be compact if n(x,,) — 0 for every sequence {xy,}7°_; C X such that z,, — 0
weakly in X.

Theorem 4. Let X be a separable Hilbert space and A be a bounded closed set
in X. Assume that there exists mapping V : A — X such that

(i) ACVA;

(1i) V is Lipschitz on A, i.e., there exists L > 0 such that

||Var — Vaso|| < Lllay — az|| for all ay,ay € A.
(iii) there exist compact seminorms nyi(x) and ne(x) on X such that
[|Var —Vas|| <nllar — az|| + Kni(ar — az) + ne(Var — Vag)], (25)

for all a1, ag € A, where 0 < n < 1 and K > 0 are constants. Then A is
a compact set in X of the finite fractal dimension.

Proof of Theorem 3. Itis convenient to use "pieces" of trajec-
tories to prove finite dimensionality of an attractor. Similarly as in [8], we define
the space X1 = F x L?(0,T;H) with the following norm:

T
1U1Be = o w1, B0, o )1+ [ [on(e), 0 (0. €O et
0

where U = (ug,u1, 6o, o(7),vo(t),v1(t),£(t)), T € [—t*,0], t € [0,T]. The con-
stant T' > 0 will be determined later. We introduce the following seminorm on
the space Xr:

T 0
nr(U) = / oo (t)] 3. pdt + / (1) 12,
0

—t*
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The Dubinsky theorem give us compactness of the seminorm ny on Xr.

Define the set Ar C Ar as the follows: Ar = {(uo,u1, 00, po(7), u(t), u(t),
0(t)), T € [-t*,0], t € [0,T])}, where (ug,u1,00,d(7)) € A and (u(t),0(t)) is the
week solution to (1)—(7) with the initial data (ug,u1,60,¢(7)) € A. The operator
Vi : Ar — Xr is defined by the formula

Vi + (uo,ut, 00, §(7), u(t), u(t),0(t))
— (St (ug, u1,00, (7)), u(T + t),u (T +¢),0(T +t)), 7€][-t%0],tel0,T].

Now we will prove that the operator Vi and the set Ay satisfy conditions of
Theorem 4. In the rest of the proof C is a generic constant depending on the
radius of dissipativity and the parameter ¢ from (18).

Condition (i) easily follows from the fact A is the attractor. Estimate (10)
implies the operator S, and therefore Vi, are Lipschitz.

Let us prove (iii). Our starting point is inequality (18). Let Uy,Us € Ar.
We denote Uy — Uy = (wg, w1, Co, wo(T), w(t),w(t),((t)). Replacing tg with T in
(18), we get

t

T
[|(w, we, Q)(#)II5, — C /e—f(t—7>||w(7)||g_“d7+ / IVw(r)||*dr

T T—t*
< |(w, we, O (T)|[3,-

Setting in (18) tp = 0 and ¢ = T and using the previous inequality, we get

[|(w, we, Q) (8)|[3; < Ce™T | ||(w, wi, O)(0)|3; + / |[Va(7)||*dr
—*
T t

e / €T uo(r)| 3 ud¢+/ ) (7|3 + / V()| Pdr

0 T T—t*

for t > T. Integrating this inequality with respect to ¢ from T — t* to 2T, we
obtain

/ || (w, wy, Q) (B)[[5dt < O(T + ¢*)e " ||(w,wt,C)(0)||3{+/llVW(T)||2dT
T—t* —t*
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T

OT + ) / S mzmh+(/HVw o)\2dr

0 T—t*

%T/|| DIy (20

T—t*

Thus, from (18) and (26) we obtain that

w, i, €) Wﬁ-/wan (1)] 2t
T—t*

<om+e+0e T (llwwn QO + [ I1VuPdr
—*
-I-C(T) (nT(U1 - UQ) + nT(VTU1 - VTUQ)) . (27)
Choosing T' large enough we get that Vp satisfies condition (iii) of Theorem 4.

Thus, for some T' > 0 the set Ar is of finite fractal dimension. Let the operator
P : Xp — F is defined by the formula

P((uo,u1, 00, po(T),v0(t),v1(t),&(t)) = (uo,u1,60,¢0(7)), t €[0,T], 7 € [-t%,0].
Sines P is Lipschitz continuous,
dimf.A = dim?PAT < dim}YTAT < 00.

Here dimicC denotes fractal dimension of a set in a space F. Theorem 3 is proved.

5. Determining functionals

In the previous section we prove finite dimensionality of the attractor for the
problem (1)—(7), but study of its structure in most cases seems not to be possible.
In view of this fact it is important to find minimal (or close to minimal) set of
natural parameters of the problem that uniquely determine long-time behaviour
of the system. General approach to the problem of existence of a finite set of
determining parameters is discussed in [13] (see also [12]). In this paper we use
the method based on the notion of completeness defect.

Definition 3. Let V and H be reflexive Banach spaces such that V' is densely
and continuously embedded in H. The completeness defect of the set L of linear
functionals on V' with respect to H is said to be a quantity

ec(V,H) =sup{||lw|lg :w eV, (w)=0,1€L, ||wl|y <1}.
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Lemma 4 enables us to prove that asymptotical behaviour of a solution is
determined by the component w.

Theorem 5 (existence of a finite set of determining functionals). Let
L= {lj};\f:l be a set of functionals on HZ () with completeness defect e (HZ(SY),
Hg_“(Q)) =€(L) < &£/C(R), were & and C(R) are constants form Lemma 4 and
1> 0. Then L is a set of asymptotically determining functionals for the problem
(1)-(7) in the following sense: for every two solutions (u',u},0%)(t), (u?,u?,62)(t)
to the problem (1)-(7) the relation

lim (Ie(ul(s)) — lg(u®(s)))ds =0, k=1,...,N,

t—+4o00
t—t*

implies that ||(u',u},0%)(t) — (u?,u2,0?)(t)||% — 0 when t — +oco.

Proof. Without loss of generality we can consider data from the absorbing
ball only. Our starting point is estimate (18). As

fulleoy < Cc - max (1] +e(O)fullo, 0 <pu<1

=1,

(for the proof see, e.g., [12, Ch. 5]), (18) yields that

lo
1w, we, (D)3 < C(R)e 410 | || (w,wr, €) (t0) I, + / IV (r)|[*dr

to—t*
t

t
+C(R) 6(5)/e_f(t_T)ll(w,wt,C)(T)II?HdT+Cc/e‘§(t‘T)Nc(w(T))dT ,

to to
(28)

where w = u! —w?, ( = 6? — 62, Ng(w(r)) = mazj=1,. ~|lj(w(r))|. Denote
U(t) = ef||(w,wy, C)(t)]], § = C(R)e(L). Then, applying Gronowall’s lemma to
(28), we get that

t to
/\I/(T)dT < eé(t_tO)C’(R) U(tg) + eto / ||Vw(T)||2dT
to to—t*

T

t
+Ce5t/e5TdT/e§SNg(w(s))ds.
to

to
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Here and to the end of the proof C is a generic constant independent on £. Inte-
grating by parts and taking into account (28), we obtain

1w, wi, Q) ([, < 2C(R)e 10D || (w, wp, €) (Fo) 3, + / [V (r)|[*dr
to—t*

¢
+C / e~ N N - (w(T))dr.

If 0 = C(R)e(L) < &, then w =& — § > 0. Evidently, for every 0 < a <t — ty

1w, we, Q) (#)][3; < 2C(R)e™ 10D | [|(w, wy, €) (to) 3, + / IVa(r)|[*dr

to—t*

t
+0/ew<t ") Ne(w d¢+0/ “1=7) N (7)) di-
t—a
Using dissipativity of (S, F), we obtain that

1w, wi, Q) ()|, < Cr(R)eC10) +C/ TN (w(r))dr + O(R, L)

fort >ty and 0 < a < t —ty. There R is the radius of absorbing ball. Fixing a
and letting ¢ to infinity, we get that

lim sup || (w, wr, ) (#)|[3, < C(R, L)e "
t——+oo
for every a > 0. This implies the statement of the theorem.

Example Let {e};2, be eigenvectors of the operator A defined in
Sect. 2. It is easy to see that for the set Ln = {eg}i_,, where ej are considered
as functionals on HZ(2), completeness defect ezN(Hg(Q),Hgfu(Q)) =y 2 As
AN — 400, the completeness defect of Ly tends to 0 while N — +oo and can be
made as small as we need.
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