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A nonlinear initial-boundary value problem with Dirichlet boundary con-
ditions for thermoelastic Mindlin-type plates dynamics equations is conside-
red. It is shown that weak solutions converge asymptotically to a compact
global finite-dimensional attractor.

1. Introduction

Let Q be a bounded domain in R?. We consider the following thermoelastic
problem:

vy + Povy — alAv — EVAive + pov + yVu + VO = =V, ®(v1, v9),
uy + Brug — p1Au — yidive = F(u), t>0,xz €9,
0t — 7’]A9 + diV’Ut = 0,

v=0u=0;6 =0, t>0,z € 09,
’U(-,O) = UO;Ut('aO) = 1)1;’[1,(',0) = Ug;
(-, 0) = uy;6(-,0) = o, x €€,

where v(z,t) = (v1(z,t),v2(x,t)) and u(x,t) are respectively the angles of slope
of the transverse sections and deflection averaged with respect to the thickness,

O(x,t) — the variation of the temperature, and V,® denotes (gZﬁ)'

The parameters «, By, B1, i1, &, 0, Ko, Y, Y1 are positive congtants.

Such a problem arises from modelling thermoelastic oscillation of plates based
on a Mindlin-type assumption on the displacement. Unlike the Kirchhoff’s elastic
strain-displacement relations this model doesn’t neglect the effects of transverse

shear forces [1, 2].
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We consider also the case ¥ = 41 = 0 when the problem is separated into
a classical two-dimensional thermoelasticity problem and a wave equation. Thus,
our approach also covers the case of 2D nonlinear thermoelasticity.

Linear 2D thermoelasticity with Dirichlet boundary conditions without viscous
damping was studied in [3, 4]. It has been proved that in a radially symmetric
domain 2 with radially symmetric data the energy decays exponentially.

The paper is organized as follows. In Section 2 we look at the well-posedness
in suitable Sobolev spaces. In Section 3 the existence of global compact attractor
and it’s finite dimensionality will be proved.

2. Well-posedness result

We start by introducing our assumptions and making precise the meanings of
a solution for (1). Denote W (z,t) = (v(z,t),u(z,t)) and define the space Wr =
{(W,6) : (W,0) € L=(0,T; (H(@))*) x (L (0,T; LA(@))NL2 (0, T; HY (%)), Wi €
L7(0, T (L3(2))%)}.

The norm and the inner product in a space X will be denoted by || - || and
(-,+) respectively if X = (L?(Q))*, k = 1,2 or 3, otherwise by || - ||x and (-,-)x.

Define diagonal operators I', D, K : (L?(2))? — (L%(Q))? by

0%l Bon K171
I'=diag| m |, D=diag| Bonn |, K=diag| rxim |,
Y Bry K27,

where parameters x; and ko are positive and will be determined later. The opera-
tor B : D(B) — (L*(Q))? with the domain D(B) = H{(Q) is defined as follows:

By1010
BO = | pv10:0
0

and the formally adjoint operator B* = (_médlv) maps D(B*) = (H}(2))? onto
L?(Q).
Consider the system (1) under the following assumptions:
(A1) F € C'(R),® € C?(R?), and there exist o; > 0, b; € R, i = 1,2, such
that
D(21,22) > —ay (23 + 223) — by,

F(2) < aslz|? + be,

where §(z) = UfF(g)dC, a; < %0 and ay < B () is the smallest eigenvalue

of —A with Dirichlet boundary conditions in (L?(Q))? (or L?(f))).
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(A2) There exist a; > 0,7 = 1,6, and ¢y > 0 such that
—a1®(v) + V,@(v) v > asv|?>Te — as;
asF(u) — Fu)u > as|ul>T€ — ag.
(A3) There exist ¢ > 0 and C > 0 such that
[F'(u)] < C(1+ |ul?);
|07 (v)] + [053D(v)| +[010:@(v)] < C(L + [v]9).
(A4) (Wo, W1,00) € Xo = (H}(Q))? x (L2(Q))? x L2(Q).

Denote N(W) = (=71 V,®(v), vF(u)). Now we can rewrite the equations (1)
in the following way:

T'Wi; + AgW + DW; + Bf = N(W),
B0y — ny1BAO — B*W; = 0,

where
Ly —71£0102 Y7101
Ag = | —7&0:10: Ly Y7102 |,
71701 =170 L
Ly = =1 + poy1 — 11075 Ly = =@ + poy — méds; Ly = —pvA.

To prove Lemmas 1 and 3 below we add KW to the both sides of the first equation
and rewrite the problem (1) in the following way:

Wy + AW + DW, + BO = N(W) + KW,

6710t - T’fYLBAg - B*W; =0, t>0,z€Q, (2)
W =0;6 =0, t> 0,z € 09,
W(,O) = Wo; Wt(ao) = WI;Q('ao) = 0o, T €4,

where A = Ag + K. Here A is a selfadjoint operator with the domain D(A) =
(H2(Q)NHE(Q))3. A direct calculation gives us that (AW, W) = (Wy, AW3) for
any Wy, Wy € D(A). This implies that operator A is symmetric. It is also obvious
that [(AW1, Wa)| < C|[Will(g2ys Wl z1)s- Next we prove the positivity of A for
k; large enough. For W = (v, v92,u) we have
(AW, W) > yaf v ||* + yial| o1 + 1€l 0101 + Oav2
+mal|dzvz|? + yi0l|drve|? + 71y (1 =€) drul® — my(¢ = Dflor|?
+717(1 = )ldaull* = yy(2 = Dllwa|” + (w1 =) [101ul? (3)
HO2ullP] + (1o + w1 = M 7illlvill? + lv2 2] + s2yllull® > vie Vol?
(= ey)VIVull® + (o + k1 = DImlloll? + woylull.
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Choose € < min{%

we have

, 71} If k1 is large enough for pg + K1 — 2 £ >0 to hold,

(AW, W) > C|W[Egye

Therefore, by the Friedrichs theorem A is a positive selfadjoint operator and we
can define A2 with the domain D(Az) (HE ()3,
Further we will consider the problem (1) in the form (2).

Definition 1. By a weak solution for (2) on [0,T] we mean an element
(W,0) € W such that O; € Ly(0,T; H Y(Q)), W(-,0) = Wy = (vo,up), and

the relations

—f(FWt( ) + DW (), Y3(t) dt+fA2W t), AZY (t)) dt+f (BB, Y (t))dt
0
= (C'W1 + DW,, Y (0)) +f(N(W( dt+f( t),Y (t))dt;
0 0
T T T

—bn 0f(9(t), 7(t))dt + 1718 Of(VH(t), Vr(t))dt + Of(Wt(t), Bo(t))dt
= B71(60,7(0))

hold for any (Y,7) € Wr such that Y(T) = 7(T) = 0, 7, € L*(0,T; H~1(2)).
Here Wi = Wy(+,0) = (v1,u1).

Now we state the result on existence of solutions.

Theorem 1. Let (A1), (A3), (A4) be satisfied. Then on any interval [0,T]
there exists a unique weak solution (W,0) for (2) such that W € C(0,T; (HZ(R2))3),
W; € C(0,T;(L?(Q))?), 6§ € C(0,T;L*(Q)). The weak solution for (2) satisfies
the energy equality

t t
B(t) = BE(s) = [I1D2Wi* = Byin [ | VO]*

t

S

where ) .
E(t) = E(W (t), Wi(t),0(t)) = 5IT2W3||* + 5| A=W|?
+3B87011> = v [ F(u)dz + 1 [ ®(v)d
Q Q

Proof. Westart with some preliminaries. Consider the auxiliary linear
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problem:

Fth + AW + DWt + B6O = G(J?, t),

6719t - 7771/6A9 —B*W; =0, t>0,z €9, (6)
W =0:0 =0, t> 0,z €00,
W(,O) = WO;Wt('ao) = Wl;g('ao) = by, x € (.

Lemma 1. Let G(t) € L?(0,T; (L?(Q))?) and (A4) be satisfied, then for every
ki € R, 1 = 1,2 the problem (6) has a unique weak solution (W,0) such that
W € C(0,T;(HE(Q)?), 6 € C0,T;L%Q)), Wy € C(0,T;(L*(Q))?) and the

following energy relation
t ) ¢ ,
Eo(t) = Eo(s) — [[IDZWi]|> = Byn [IIVO]* + [(G(t), W) (7)
S S S
is satisfied, where
Ey(t) = §||F2Wt|| + §||A2W|| + 55’)/1”9“ - (8)

(b) Moreover, under the assumption G(t) = 0 we have that there exist k] > 0
such that for every k; > k¥, i = 1,2, the problem (6) generates a linear dynamical
system (Xo, U (t)) in the space Xo = (H§(2))? x (L2(R))? x L%(Q) with exponen-
tially stable evolution operator U (t)(Wo, W1,600) = (W (t), Wi(t),0(t)), i.e., there
exist Cy,c > 0 such that

1T (£)(Wo, Wh, 60)llx, < Coe™ | (Wo, Wi, 00) | x,-

Proof. Inorder to prove the first statement of the theorem and existence
of the semigroup on the space Xy one can apply the Faedo-Galerkin method (see,
e.g., [5-7]). All calculations are just the same as for nonlinear case given below.
We will prove here only the exponential stability of the semigroup. Define

H(r) = (TW, W) + S |D3 W 9

It is obvious that

— 2 onll? = 2 < H(2)

(10)
< g loell? + 5h lluell® + viBollvll® + B lull>.
If G(t) = 0 it follows from (7) that
1
B =~ DW= Byin|[ VO (1)
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From (6) we conclude

G = IDTWLP — [ AZW|)* — (BO,W). (12)
A suitable Lyapunov function is defined by V (t) = Ey(t) + eH (t), where
0<e< min{,@o,ﬁl}. (13)

For every ¢ > 0 we have from (3), (8), (9), (11), (12)
1
G+ eV < —5e= AW =B~ §—c—F)llul’

(81 = § === Pwill? = Bni(n = 5 — 25) V6
_x_ —c—
ot e © P 2 — LBy 2,

Choosing ¢ sufficiently small and as in (13), ¢ such that € > ¢ and k1, ko large

enough, we get
av
—+cV <0
o +cV <

Using (10), we conclude that there exists Cy > 0 such that
Eg(t) S Cge_CtEo(O).

This proves the lemma.

Let {e;} be the basis of eigenvectors of —A with the Dirichlet boundary con-
ditions in L?(2) with the corresponding eigenvalues A\; < Ay < ... and {&;} be the
basis of eigenvectors of —A with the Dirichlet boundary conditions in (L?(2))?
with the corresponding eigenvalues A\ < A1 < Ao < Ao < A3.... Now we define
an approximate solution for the problem (2) corresponding to e; and ¢;

vi(t) = Y git)es um(t) =Y fil)ei; Om(t) = wilt)es,
i=1 io1 i-1

satisfying the following equations:
Y1 (VO — @Avp, 4+ Boy — EVdivoy, + (o + K1)vm + BV 0, €;)
= —=71(Vo®(vm), &) + K171 (Vm, €:),
V(U — 1 Atigy, + B0y — Y1divoy, + Kotim, €;) (14)
= (F(um), €:) + r2y(tm, €),

(nylém — n1BAb,, + diviy,,e;) =0

for ¢ =1,2,...,m and the initial conditions

(vm(0),€:) = (vo,€);  (um(0),e;) = (uo,€i); (0 (0),e:) = (6o, €i);

(0m(0),€;) = (v1,€); (U (0),e;) = (tU1,€;); 1=1,2,...,m.
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Multiplying the first equation by §;(t), the second by f;(t), the third by w;(t),
summing with respect to 4, adding the equations, and integrating by parts, we
obtain

t t . t .
En(t) = En(0) — Byin [ IV0ull2 = [ D2 Wol® + [ (KW, Wr),  (16)
0 S 0
where W, = (v, Uy, ) and

1, 1. 1, 1 1
En(t) = §||F2Wm||2 + §||A2Wm||2 + §ﬁ71||9m||2

— [ S + 31 [ B(om)da.
Q Q
Observing (A1) and (A4), we get from (16) that

IWinll gy + Wl + 1617 + / IV0|*dr < C, t€[0,7], (17)

where C depends on T and parameters of the problem. This implies that there
exist a subsequence (W, 0y,;) and an element (W = (v,u),) such that

Wi, = W weak —* in L>(0,T; (HS(2))?),
ij W  weak —* in L™ (0, (LZ(Q)) ),
Om; — 0 weak —* in L*>(0,T; : L2(92)),

Om; — 0  weakly in L2(0,T; H}(2)).

(18)

From the known property of weak limits it follows that a weak limit point satisfies
the condition .
W Iy + W12 + 1011 < C. (19)

Lemma 2. For any w € L?(0,T; (L?(2))?),y € L%(0,T; L*(Q))

(a) lim f Vy@(vp, ), w)dt = f(vv@(v),w)dt,
=00 0
L. . (20)
) Jin [ (P )0)dt = [(F0) )t
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Proof Weshow first that V,® is locally Lipschitz from (H})? into (L?)2.
We have for 0 < ¢ < 1 that

Vo ®(vm;) = Vy @) > < C [1(1+ [vm; |7 +[v]?)?
Q
(Vim; — v1)? + (1 + |V, |9 + |v|q)2(vzmj —9)?
+(1 + [vm, |7 + |v|q)2((vlm]. —v1)? + (Vim; — v1)?)]dz.

Using the Cauchy—Schwarz inequality and the embedding H}(Q) C LP(Q) for
1 < p < oo, we majorize the last expression by

2 o 2 2
IVo®@(om;) = Vo@O)IF < &+ [lom, )2 + ollcagy2) ™ lom; =0l 2 s

where 0 < o < 1. Again by the embedding H}(2) C LP(Q) for 1 < p < oo and
H?(Q) C Lﬁ(Q) for 0 < o < 1, we have

IVo®(vm;) = Vo® ()7 < &1+ llom, gy + 10l gy2)* Nom; = vllezye
and
IVo@(vim;) = Vo ()II* < &1+ l[vm, lzgye + 10l r2)2)Nom,; — vllEgaye- (21)
It follows from (17) by the compactness of embedding (L2(0,T;HE(2)) N

H'(0,T;L*(2))) C L*(0,T; H (%)) [8] that v, — v strongly in L*(0,T; H (2)).
Thus, from (17), (19) and (21) we have

T T
| ‘!(Vvq)(vm)aw)dT - ‘Of(vvi'(v)aw)dTH

< C S+ lJomg | (zy2 + 0l gy2) om; = vll ez llwl)dr

1

2

T
< (C‘({vaj _UH%HJ)2> j:OOO-

The case (b) is treated similarly.

From (14), (15), (18), (20) and the structure of equations in (2) it follows that
(W, ) is a weak solution for (2). One can also show (see [8, 7]) that this function
satisfies (2) in the sense of distributions and the energy equality (4).

It is obvious that the solution constructed is also the solution for the linearized
problem (6) with G(t) = N(W) + KW. From Lemma 2 it follows that G(t) €
12(0,T; (L*(@))%).

Let (W'(t),0'(t)) and (W?2(t),02%(t)) be weak solutions for (2) with initial
conditions (W, W, 08) and (W2, W2, 62), respectively. Then the difference of
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these solutions is the solution for (6) with the initial conditions (W} — W&, W —
W2,05 —02) and G(t) = N(W') — N(W?) + K(W! — W?). Therefore, from (8)
and Gronwall’s lemma it follows that

[V (8) = W2(0) 2ay0 + 1678 — I + W (1) = WP (1)
< CIWG = W32,y + 185 = G312 + W = W2 |2),

where C depends on T and R > 0 such that Eq(W}, Wi, 038) + Eo(W2, WZ,62)
< R. Therefore, the problem (2) has a unique solution (W,6) = (v,u,#) such
that W € C(0,T; (Hy (Q))*), Wy € C(0,T; (L*(Q))*), 0 € C(0,T; L*(2)).

R em ark 1. Theorem 1 establishes existence of a dynamical system
(Xo, St) with evolution operator defined by S;(Wo, Wy, 6p) = (W (t), Wi(t),0(t)).

3. Global attractor

In this section we prove our main result on the existence of a compact global
attractor of the dynamical system (Xj,S;) generated by the problem (2). It is
known (see, for example, [5, 7]) that to prove the existence of a compact global
attractor it is sufficient to show that a dynamical system is dissipative and asymp-
totically smooth. We recall the corresponding definitions.

Definition 2.

1. A bounded closed set A is said to be a global attractor of dynamical sys-
tem (X, Sy) if it is strictly invariant and uniformly attracts all trajectories
emanating from the bounded sets, i.e., Syl = A and for any bounded set
BCX

lim sup dist(Sy,2A) = 0.
t—o00 yeB

2. A closed set € is said to be absorbing if for any bounded set B there exists
to = to(B) such that Sy(B) C € for all t > ty. A dynamical system is said
to be dissipative if it possesses a bounded absorbing set.

3. A dynamical system (X,Sy) is said to be asymptotically smooth if for any
bounded set B such that S¢B C B for t > 0 there exists a compact set R in
the closure B of B such that

lim sup dist(Syy, &) = 0.
t—00 ye%

Our main result is the following assertion.
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Theorem 2. Under assumptions (A1)-(A4) the problem (2) possesses a finite-
dimensional compact global attractor in the space Xy. Moreover,

A = M (N), (22)

where N is the set of stationary points of the system (Xg,Sy), i.e., N={z¢€ X :
Siz = z for all t > 0}. The unstable manifold M" (N) emanating from the set N
is the set of all y € X such that there exists a full trajectory {z(t) : t € R} with
the properties

z(0) =y, tEEH distx(z(t),N) = 0.
To prove the theorem we need the following lemma.

Lemma 3. Let in addition to the hypotheses of Theorem 1 Assumption (A2)
holds. Then the dynamical system (Xo,S;) generated by weak solutions for (2)
possesses a bounded positive invariant absorbing set B.

Proof. Asin Lemma 1 we define a function V(t) = E(t) + eH(t) where
H(t) is defined by (9) and E(t) is given by (5).

dH
—r = 2w — AW — (B6, W)
HN(W), W) + [ KW,
dE 1
— =~ D2W* = Bryanl| V0| + (KW, W).

Observing (A1) and (A2) for k1 and k9 large enough, we obtain
1
G +cV < —(e =AW |? = 71(Bo — § — 26 = F)lve]|?
—y(B1 = § =26 = S)luell* = Byi(n — 5 — 35 IV
£(B+ctBoc) i} 2 | (elcteBr)
+(f + ER1 + s + Eajo — 0[16)’71”’0” + (# + ERQ
2
+2 +easay — cag)y|lul|® — azemi o]*TO — asyelul*TO + yiaze|]
+vyase| Q| + 71 (ea1 — ¢)|Qb1 + y(eaq — ¢)|Qbs .
Since €p > 0 we can choose € > 0, ¢ > 0, and M > 0 such that
dv

— < M. 2
dt—i—cV_ (23)

It follows from (10) that there exists Mj;, Ms >0 such that V(z(t)) >
M1||z(t)||§(0 — My. This inequality and (23) prove the lemma (for details we refer
to [5, Theorem 1.4.1]).

To show that the dynamical system (X, S;) is asymptotically smooth we need
the following result.
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Lemma 4. Let z((t) = (W(t), W}(t),0(t)) and 2o(t) = (W?2(t), W2 (t),62(t))
be two solutions for the problem (2) lying in the bounded absorbing set B and

W'(t) — W(t) W (t)
2(t) = ( Wit - W) ) _ ( Wi(t) ) .
0'(t) — 0%(t) (1)
Then there exist C1,Co, k1, ko > 0 such that

Ey(2(T)) < Cre™ T By(2(0) + Cac®™” e W (1) (29)

for all T > 0.

Proof. We use the representation of weak solutions for nonlinear problem
(2):
¢
Si(2(0)) = U#)2(0) + [ U(t = 7)(0, (=71 Vo@(v' (7)) + 11 Vo @(v*(7))
0
+71610(7), YF (u1 (7)) — vF (u2(7)) + y62u(7)), 0)dr,

where U (t) is the evolution operator of the problem (6) with G = 0 (see Lemma 1).
Observing Lemma 1, we have

Eo(2(T)) < c1|S(2(0)|I? < cae T Eo(2(0))

T
+es([ e T (V@ (v! (7)) = Vo@(0? (1) | + [F (w1 (7))

0 _
—F (uz(7))|| + W (7)) dr)>.
Using Cauchy—Schwarz inequality, the interpolation inequality ||W(T)||%Ha)3 <

6||W||?Hé)3 +C(e)||[W||? (where 0 < 0 < 1 and the perameter £ > 0 can be chosen

2¢7

T
arbitrary small) and the fact that [e 24T dr = = (1—e 2T) < L we get the
0

following estimate:

T T B
Ep(2(T)) < e Ey(2(0) + o [ e 2Ty [(|W(T)|2y0s
0 0

HW () |12)dr < c2e™*T Ey(2(0)) + cse [ Eo(2(1))dT + ¢c6 [ ||W(7)|*dr.
0 0
Gronwall’s lemma yields

Eo(2(T)) < cae” T By(2(0)) + coe™T Of W (7)|1*dr. (25)
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Choosing € small enough, we conclude from (25) the statement of the lemma.

Proof of Theorem 2. To prove the theorem we use the following
result from [9]:

Theorem 3 (I. Chueshov-1. Lasiecka). Let (X,S;) be a dynamical sys-
tem on a complete metric space X endowed with a metric d. Assume that for
any bounded positively invariant set B in X there exists T > 0, a continuous
nondecreasing function q : Ry — Ry and a pseudometric pg on C(0,T; X) such
that:

(i) q(0) =0, q(s) < s,8 > 0;

(ii) the pseudometric ph is precompact (with respect to X) in the following
sense: any sequence {zn} C B has a subsequence {x,,} such that the sequence
{yr} C C(0,T; X) of elements yi(7) = Sz, is Cauchy with respect to ph;

(#1i) the following inequality holds

d(Sry1, Stye) < a(d(y1,y2)) + pp({Sry1}, {Sry2})

for every y1,ys € B, where we denote by Sry; the element in the space C(0,T; X)
given by function y;(1) = Sry;. Then (X, S;) an asymptotically smooth dynamical
system.

We can rewrite (24) as follows

12(T) 1xo < Ce P TN2(0)|x, + p" ({21 (D)}, {22(D)}),
where pT ({z1(t)}, {z2(t)}) = Cek2T Jnax |[W ()| is a precompact pseudometric

by the compactness of embedding (L?(0,T; (H}(Q))3) N HY(0,T; (L?(2))?))
C C(0,T;(L*(Q))3) and k; > 0,7 = 1,2. Select T large enough for Ce %17 to be
less then 1. Choosing X = Xy, d(y1,v2) = lly1 — ¥2llx,, ¢(5) = Ce ™ Ts, we get
that the dynamical system (Xj, S7) is asymptotically smooth and with Lemma 3
this gives [5] existence of a compact global attractor 2.
Now prove that the global attractor has a finite fractal dimension. It follows

from (24) that

2T

! Ey(2(t)) < Fre T Ey(2(0)) + Cs r[gaﬁllw(t)H?, (26)

where C3 > 0. Similar to [10] we define a space X = Xy x X; (where Xy =
(H(92))*x(L*(92))*x L*(Q) and X1 = (L*(0,T; (Hg ())*)NH' (0,T; (L*(2))*)) x
L?(0,T; L?(2))) equipped with the norm

T
1Z]I* = |=(0)II%, + 2/Eo(Z(t))dt,
0
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where Z = (2(0), 2(t)) and T > 0 will be determined later. On the space X we
define a compact (by the compactness of the embedding (L?(0,T;(H{(22))?) N
H(0, T3 (L*(2)))%) € C(0,T; (L*(£2))%)) seminorm

ne(2) = max W)

Next we consider the set
Ar ={Z = (2(0), 2(t)),t € [0,T] : z(0) € A}.

The operator Vp : Ay — X is defined by the formula Vi : (2(0),2(t)) —
(2(T),z(t+1T)). Now we will verify that V is Lipschitz continuous on 207. From
(8) and Gronwall’s lemma, we have

Eo(z(t)) < Eo(2(s))e®® =9 0<s<t, (27)

or after setting t = T + s and integrating from T to 27", we get

2T T
/ Fo(2(s))ds < =7 / o (2(s))ds. (28)
T 0

Observin
& T
5121 — Zo|l)k = Eo(2(0)) + Oon(i(t))dt,

2T
s\VrZy — Vi 2ol = Bo(2(T)) + [ Eo(2(t))dt,
T

we get from (27) and (28) the Lipschitz property for V. From (24) and (26) we
conclude that

\WVrZy —VrZs||x <nrl|Z1 — Za||x + Calnr(Z1 — Z2) + ne(VrZy — Vi Zs)]

for all Zy,Zy € Ay, where np = Cse T and Cy > 0, C5 > 0. We can select T
large enough and € small enough to obtain n7 < 1. Therefore, all conditions of
the Theorem 2.3 in [10] are satisfied and, therefore, dim;(raCQ[T < 00. This implies

that dzmﬁoac% <00 .

To prove (22) it is enough to show that the functional U(z(t)) = E(z(t)) —
%HK%W(t)H2 is the strict Lyapunov function for (Xo, St), i.e., it is continuous and
t — ®(Syy) is nonincreasing for any y € Xy and the equality ¥(Sy,y) = ¥(y) for

some ty > 0 and y € X implies that Syy = y for all £ > 0. Indeed, it is obvious
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that ®(z) is continuous on Xjy. From (4) it follows that it is nonincreasing. If
U(z(tg)) = ¥(2(0)) then

to to
/||D%Wt||2dt+/||vey|2dt:o.
0 0

Therefore, Wy = 0 and VO = 0 for ¢ € [0, ¢]. By the Friedrichs inequality § = 0.
Hence, W (t) = W, 6(t) = 0 is the stationary solution for (2). Now the existence of
a strict Lyapunov function implies (see, e.g., [5, Theorem 1.6.1]) that 2 = M"(N)
and Theorem 2 is proved.

Remark 2. In the case v = ;1 = 0 corresponding to two-dimensional
thermoelasticity we denote W = v, operators I', D, K : (L?(2))? — (L?(f2))? are
as follows

=1, D=pyl, K-=0,

where T is the identity on (L?(2))?, B = BV# and

Ao — A — —aA+ug—§8% —68182
° —£010, —aA+ g —£03 )

Ay is a selfadjoint operator with the domain D(A4g) = (H%(Q) N H{(2))? and
the estimate (Agv,v) > a||Vo||? + uo||v]|? + £||divo]|? holds. As in Lemma 1 we
define a function V(t) = Ey(t) + ¢H(t), where H(t) = (v,v) + %HUHQ, Ey, =

1
Sl + Sl AZv)? + §||9||2 and 0 < € < fy. For every ¢ > 0 we have

1
G TV < =(Bo—e—5—5)uell” = 5 — o) 450

—e(ke — & — Do — VB|y2 — B(n — %5 — 55)[VE? <0,

which gives us exponential stabilization of the linear semigroup. Similarly, for
nonlinear problem we obtain, that for the function V(¢) = E(t) + c¢H(t) (where
1
E(t) = Llvel® + $IIAZ)? + §H0||2 + [ ®(v)dz) the following estimate holds for
Q
some M > O:

1
BoroV < —(Bo—e =5 =Sl = = HIATIP +e(5+ D + £ +

—2E)[wl|* = Bl — 5 — 55 IVOI? — eaz|lv]|*F + (eas + (ear — )b1)|Q < M.

A suitable Lyapunov function for this system is WU(z(t)) = E(z(t)).
From it follows that Theorem 2 also takes place in the case of two-dimensional
thermoelasticity.
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