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A nonlinear initial-boundary value problem with Dirichlet boundary con-
ditions for thermoelastic Mindlin-type plates dynamics equations is conside-
red. It is shown that weak solutions converge asymptotically to a compact
global �nite-dimensional attractor.

1. Introduction

Let 
 be a bounded domain in R
2 . We consider the following thermoelastic

problem:

vtt + �0vt � ��v � �rdivv + �0v + 
ru+ �r� = �rv�(v1; v2);

utt + �1ut � �1�u� 
1divv = F (u); t > 0; x 2 
;

�t � ��� + divvt = 0;

v = 0;u = 0; � = 0; t > 0; x 2 @
;

v(�; 0) = v0; vt(�; 0) = v1;u(�; 0) = u0;

ut(�; 0) = u1; �(�; 0) = �0; x 2 
;

(1)

where v(x; t) = (v1(x; t); v2(x; t)) and u(x; t) are respectively the angles of slope

of the transverse sections and de�ection averaged with respect to the thickness,

�(x; t) � the variation of the temperature, and rv� denotes
�
@v1�

@v2�

�
.

The parameters �, �0, �1, �1, �, �, �0, 
, 
1 are positive constants.

Such a problem arises from modelling thermoelastic oscillation of plates based

on a Mindlin-type assumption on the displacement. Unlike the Kirchho�'s elastic

strain-displacement relations this model doesn't neglect the e�ects of transverse

shear forces [1, 2].
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We consider also the case 
 = 
1 = 0 when the problem is separated into

a classical two-dimensional thermoelasticity problem and a wave equation. Thus,

our approach also covers the case of 2D nonlinear thermoelasticity.

Linear 2D thermoelasticity with Dirichlet boundary conditions without viscous

damping was studied in [3, 4]. It has been proved that in a radially symmetric

domain 
 with radially symmetric data the energy decays exponentially.

The paper is organized as follows. In Section 2 we look at the well-posedness

in suitable Sobolev spaces. In Section 3 the existence of global compact attractor

and it's �nite dimensionality will be proved.

2. Well-posedness result

We start by introducing our assumptions and making precise the meanings of

a solution for (1). Denote W (x; t) = (v(x; t); u(x; t)) and de�ne the space WT =

f(W; �) : (W; �) 2 L
1(0; T ; (H1

0 (
))
3)�(L1(0; T ;L2(
))\L2(0; T ;H1

0 (
)));Wt 2

L
1(0; T ; (L2(
))3)g.

The norm and the inner product in a space X will be denoted by k � k and

(�; �) respectively if X = (L2(
))k, k = 1; 2 or 3, otherwise by k � kX and (�; �)X .

De�ne diagonal operators �, D, K : (L2(
))3 ! (L2(
))3 by

� = diag

0
@ 
1


1




1
A ; D = diag

0
@ �0
1

�0
1

�1


1
A ; K = diag

0
@ �1
1

�1
1

�2
;

1
A ;

where parameters �1 and �2 are positive and will be determined later. The opera-

tor B : D(B)! (L2(
))3 with the domain D(B) = H
1
0 (
) is de�ned as follows:

B� =

0
@ �
1@1�

�
1@2�

0

1
A

and the formally adjoint operator B� =
�
��
1div

0

�
maps D(B�) = (H1

0 (
))
3 onto

L
2(
).

Consider the system (1) under the following assumptions:

(A1) F 2 C
1(R);� 2 C

2(R2), and there exist �i > 0; bi 2 R, i = 1; 2, such

that
�(z1; z2) � ��1(z

2
1 + z

2
2)� b1;

F(z) � �2jzj
2 + b2;

where F(z) =
zR
0

F (�)d�, �1 <
��1
2
, and �2 <

�1�1
2

, (�1 is the smallest eigenvalue

of �� with Dirichlet boundary conditions in (L2(
))2 (or L2(
))).
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(A2) There exist ai > 0; i = 1; 6, and �0 > 0 such that

�a1�(v) +rv�(v) v � a2jvj
2+�0 � a3;

a4F(u)� F (u)u � a5juj
2+�0 � a6:

(A3) There exist q � 0 and C > 0 such that

jF
0(u)j � C(1 + juj

q);

j@
2
1�(v)j+ j@

2
2�(v)j+ j@1@2�(v)j � C(1 + jvj

q):

(A4) (W0;W1; �0) 2 X0 = (H1
0 (
))

3
� (L2(
))3 � L

2(
):

Denote N(W ) = (�
1rv�(v); 
F (u)). Now we can rewrite the equations (1)

in the following way:

�Wtt +A0W +DWt +B� = N(W );

�
1�t � �
1��� �B
�
Wt = 0;

where

A0 =

0
@ L1 �
1�@1@2 

1@1

�
1�@1@2 L2 

1@2

�
1
@1 �
1
@2 L3

1
A ;

L1 = �
1��+ �0
1 � 
1�@
2
1 ;L2 = �
1��+ �0
1 � 
1�@

2
2 ;L3 = ��1
�:

To prove Lemmas 1 and 3 below we addKW to the both sides of the �rst equation

and rewrite the problem (1) in the following way:

�Wtt +AW +DWt +B� = N(W ) +KW;

�
1�t � �
1��� �B
�
Wt = 0; t > 0; x 2 
;

W = 0; � = 0; t > 0; x 2 @
;

W (�; 0) = W0;Wt(�; 0) = W1; �(�; 0) = �0; x 2 
;

(2)

where A = A0 +K. Here A is a selfadjoint operator with the domain D(A) =

(H2(
)\H1
0 (
))

3. A direct calculation gives us that (AW1;W2) = (W1; AW2) for

any W1;W2 2 D(A). This implies that operator A is symmetric. It is also obvious

that j(AW1;W2)j � CkW1k(H1

0
)3kW2k(H1

0
)3 . Next we prove the positivity of A for

�i large enough. For W = (v1; v2; u) we have

(AW;W ) � 
1�k@1v1k
2 + 
1�k@2v1k

2 + 
1�k@1v1 + @2v2k
2

+
1�k@2v2k
2 + 
1�k@1v2k

2 + 
1
(1� �)k@1uk
2
� 
1
(

1
�
� 1)kv1k

2

+
1
(1� �)k@2uk
2
� 
1
(

1
�
� 1)kv2k

2 + (�1 � 
1)
[k@1uk
2

+k@2uk
2] + (�0 + �1 � 
)
1[kv1k

2 + kv2k
2] + �2
kuk

2
� 
1�krvk

2

+(�1 � �
1)
kruk
2 + (�0 + �1 �




�
)
1kvk

2 + �2
kuk
2
:

(3)
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Choose � < minf�1�1�2�2

1

;
�1

1
g. If �1 is large enough for �0 + �1 �




�
� 0 to hold,

we have

(AW;W ) � CkWk
2
(H1

0
)3
:

Therefore, by the Friedrichs theorem A is a positive selfadjoint operator and we

can de�ne A
1

2 with the domain D(A
1

2 ) = (H1
0 (
))

3.

Further we will consider the problem (1) in the form (2).

De�nition 1. By a weak solution for (2) on [0; T ] we mean an element

(W; �) 2 WT such that �t 2 L2(0; T ;H
�1(
)), W (�; 0) = W0 = (v0; u0), and

the relations

�

TR
0

(�Wt(t) +DW (t); Yt(t))dt +
TR
0

(A
1

2W (t); A
1

2Y (t))dt +
TR
0

(B�; Y (t))dt

= (�W1 +DW0; Y (0)) +
TR
0

(N(W (t)); Y (t))dt +
TR
0

(KW (t); Y (t))dt;

��
1

TR
0

(�(t); �t(t))dt+ �
1�

TR
0

(r�(t);r�(t))dt+
TR
0

(Wt(t); B�(t))dt

= �
1(�0; �(0))

hold for any (Y; �) 2 WT such that Y (T ) = �(T ) = 0, �t 2 L
2(0; T ;H�1(
)).

Here W1 = Wt(�; 0) = (v1; u1).

Now we state the result on existence of solutions.

Theorem 1. Let (A1), (A3), (A4) be satis�ed. Then on any interval [0; T ]

there exists a unique weak solution (W; �) for (2) such thatW 2 C(0; T ; (H1
0 (
))

3),

Wt 2 C(0; T ; (L2(
))3), � 2 C(0; T ;L2(
)). The weak solution for (2) satis�es

the energy equality

E(t) = E(s)�
tR
s

kD
1

2Wtk
2
� �
1�

tR
s

kr�k
2

+
tR
s

(KW;Wt) 0 � s � t � T;

(4)

where
E(t) = E(W (t);Wt(t); �(t)) =

1
2
k�

1

2Wtk
2 + 1

2
kA

1

2Wk
2

+1
2
�
1k�k

2
� 


R



F(u)dx+ 
1

R



�(v)dx:
(5)

P r o o f. We start with some preliminaries. Consider the auxiliary linear
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problem:

�Wtt +AW +DWt +B� = G(x; t);

�
1�t � �
1��� �B
�
Wt = 0; t > 0; x 2 
;

W = 0; � = 0; t > 0; x 2 @
;

W (�; 0) = W0;Wt(�; 0) = W1; �(�; 0) = �0; x 2 
:

(6)

Lemma 1. Let G(t) 2 L
2(0; T ; (L2(
))3) and (A4) be satis�ed, then for every

�i 2 R, i = 1; 2 the problem (6) has a unique weak solution (W; �) such that

W 2 C(0; T ; (H1
0 (
))

3), � 2 C(0; T ;L2(
)), Wt 2 C(0; T ; (L2(
))3) and the

following energy relation

E0(t) = E0(s)�
tR
s

kD
1

2Wtk
2
� �
1�

tR
s

kr�k
2 +

tR
s

(G(t);Wt) (7)

is satis�ed, where

E0(t) =
1

2
k�

1

2Wtk
2 +

1

2
kA

1

2Wk
2 +

1

2
�
1k�k

2
: (8)

(b) Moreover, under the assumption G(t) � 0 we have that there exist ��i > 0

such that for every �i � �
�
i , i = 1; 2, the problem (6) generates a linear dynamical

system (X0; U(t)) in the space X0 = (H1
0 (
))

3
� (L2(
))3 �L

2(
) with exponen-

tially stable evolution operator U(t)(W0;W1; �0) = (W (t);Wt(t); �(t)), i.e., there

exist C0; c > 0 such that

kU(t)(W0;W1; �0)kX0
� C0e

�ct
k(W0;W1; �0)kX0

:

P r o o f. In order to prove the �rst statement of the theorem and existence

of the semigroup on the space X0 one can apply the Faedo�Galerkin method (see,

e.g., [5�7]). All calculations are just the same as for nonlinear case given below.

We will prove here only the exponential stability of the semigroup. De�ne

H(t) = (�Wt;W ) +
1

2
kD

1

2Wk
2
: (9)

It is obvious that

�

1
2�0
kvtk

2
�




2�1
kutk

2
� H(t)

�

1
2�0
kvtk

2 + 


2�1
kutk

2 + 
1�0kvk
2 + 
�1kuk

2
:

(10)

If G(t) � 0 it follows from (7) that

dE0

dt
= �kD

1

2Wtk
2
� �
1�kr�k

2
: (11)
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From (6) we conclude

dH
dt

= k�
1

2Wtk
2
� kA

1

2Wk
2
� (B�;W ): (12)

A suitable Lyapunov function is de�ned by V (t) = E0(t) + "H(t), where

0 < " < minf�0; �1g: (13)

For every c > 0 we have from (3), (8), (9), (11), (12)

dV
dt

+ cV � �
1
2
("� c)kA

1

2Wk
2
� 
1(�0 �

c
2
� "�

"c
2
)kvtk

2

�
(�1 �
c
2
� "�

"c
2
)kutk

2
� �
1(� �

"
2
�

c
2�1

)kr�k2

�
(�0+�1� 


�
��0c�c��)"
1
2

kvk
2
�

(�2��1c�c)"

2

kuk
2
:

Choosing " su�ciently small and as in (13), c such that " > c and �1, �2 large

enough, we get
dV

dt
+ cV � 0:

Using (10), we conclude that there exists C0 > 0 such that

E0(t) � C0e
�ct

E0(0):

This proves the lemma.

Let feig be the basis of eigenvectors of �� with the Dirichlet boundary con-

ditions in L2(
) with the corresponding eigenvalues �1 � �2 � ::: and f~eig be the

basis of eigenvectors of �� with the Dirichlet boundary conditions in (L2(
))2

with the corresponding eigenvalues �1 � �1 � �2 � �2 � �3 : : :. Now we de�ne

an approximate solution for the problem (2) corresponding to ei and ~ei

vm(t) =

mX
i=1

gi(t)~ei; um(t) =

mX
i=1

fi(t)ei; �m(t) =

mX
i=1

!i(t)ei ;

satisfying the following equations:


1(�vm � ��vm + �0 _vm � �rdivvm + (�0 + �1)vm + �r�m; ~ei)

= �
1(rv�(vm); ~ei) + �1
1(vm; ~ei);


(�um � �1�um + �1 _um � 
1divvm + �2um; ei)

= 
(F (um); ei) + �2
(um; ei);

(�
1 _�m � �
1���m + div _vm; ei) = 0

(14)

for i = 1; 2; : : : ;m and the initial conditions

(vm(0); ~ei) = (v0; ~ei); (um(0); ei) = (u0; ei); (�m(0); ei) = (�0; ei);

( _vm(0); ei) = (v1; ~ei); ( _um(0); ei) = ( _u1; ei); i = 1; 2; : : : ;m:

(15)
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Multiplying the �rst equation by _gi(t), the second by _fi(t), the third by !i(t),

summing with respect to i, adding the equations, and integrating by parts, we

obtain

Em(t) = Em(0)� �
1�

tR
0

kr�mk
2
�

tR
s

kD
1

2 _Wmk
2 +

tR
0

(KWm;
_Wm); (16)

where Wm = (vm; um) and

Em(t) =
1

2
k�

1

2 _Wmk
2 +

1

2
kA

1

2Wmk
2 +

1

2
�
1k�mk

2

�


Z



F(um)dx+ 
1

Z



�(vm)dx:

Observing (A1) and (A4), we get from (16) that

kWmk(H1

0
)3 + k _Wmk

2 + k�mk
2 +

tZ
0

kr�mk
2
d� � C; t 2 [0; T ]; (17)

where C depends on T and parameters of the problem. This implies that there

exist a subsequence (Wmj
; �mj

) and an element (W = (v; u); �) such that

Wmj
! W weak �

�
in L

1(0; T ; (H1
0 (
))

3);

_Wmj
! _W weak �

�
in L

1(0; T ; (L2(
))3);

�mj
! � weak �

�
in L

1(0; T ;L2(
));

�mj
! � weakly in L

2(0; T ;H1
0 (
)):

(18)

From the known property of weak limits it follows that a weak limit point satis�es

the condition

kWk
2
(H1

0
)3
+ k _Wk

2 + k�k
2
< C: (19)

Lemma 2. For any w 2 L
2(0; T ; (L2(
))2); y 2 L

2(0; T ;L2(
))

(a) lim
j!1

TR
0

(rv�(vmj
); w)dt =

TR
0

(rv�(v); w)dt;

(b) lim
j!1

TR
0

(F (umj
); y)dt =

TR
0

(F (u); y)dt:

(20)
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P r o o f. We show �rst that rv� is locally Lipschitz from (H1
0 )

2 into (L2)2.

We have for 0 < � < 1 that

krv�(vmj
)�rv�(v)k

2
� C

R



[(1 + jvmj
j
q + jvj

q)2

(v1mj
� v1)

2 + (1 + jvmj
j
q + jvj

q)2(v2mj
� v2)

2

+(1 + jvmj
j
q + jvj

q)2((v1mj
� v1)

2 + (v1mj
� v1)

2)]dx:

Using the Cauchy�Schwarz inequality and the embedding H
1
0 (
) � L

p(
) for

1 � p <1, we majorize the last expression by

krv�(vmj
)�rv�(v)k

2
� ~c(1 + kvmj

k(H1

0
)2 + kvk(H1

0
)2)

2q
kvmj

� vk
2

(L
2

1�� )2
;

where 0 < � < 1. Again by the embedding H
1
0 (
) � L

p(
) for 1 � p < 1 and

H
�(
) � L

2

1�� (
) for 0 < � < 1, we have

krv�(vmj
)�rv�(v)k

2
� ~c(1 + kvmj

k(H1

0
)2 + kvk(H1

0
)2)

2q
kvmj

� vk
2
(H1

0
)2

and

krv�(vmj
)�rv�(v)k

2
� ~c(1 + kvmj

k(H1

0
)2 + kvk(H1

0
)2)

2q
kvmj

� vk
2
(H�)2 : (21)

It follows from (17) by the compactness of embedding (L2(0; T ;H1
0 (
)) \

H
1(0; T ;L2(
))) � L

2(0; T ;H�(
)) [8] that vmj
! v strongly in L2(0; T ;H�(
)).

Thus, from (17), (19) and (21) we have

k

TR
0

(rv�(vm); w)d� �
TR
0

(rv�(v); w)d�k

� C

TR
0

((1 + kvmj
k(H1

0
)2 + kvk(H1

0
)2)

q
kvmj

� vk(H�)2kwk)d�

�

 
C

TR
0

kvmj
� vk

2
(H�)2

! 1

2

!
j!10:

The case (b) is treated similarly.

From (14), (15), (18), (20) and the structure of equations in (2) it follows that

(W; �) is a weak solution for (2). One can also show (see [8, 7]) that this function

satis�es (2) in the sense of distributions and the energy equality (4).

It is obvious that the solution constructed is also the solution for the linearized

problem (6) with G(t) = N(W ) + KW . From Lemma 2 it follows that G(t) 2

L
2(0; T ; (L2(
))3).

Let (W 1(t); �1(t)) and (W 2(t); �2(t)) be weak solutions for (2) with initial

conditions (W 1
0 ;W

1
1 ; �

1
0) and (W 2

0 ;W
2
1 ; �

2
0), respectively. Then the di�erence of
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these solutions is the solution for (6) with the initial conditions (W 1
0 �W

2
0 ;W

1
1 �

W
2
1 ; �

1
0 � �

2
0) and G(t) = N(W 1)� N(W 2) +K(W 1

�W
2). Therefore, from (8)

and Gronwall's lemma it follows that

k(W 1(t)�W
2(t)k2

(H1

0
)3
+ k�

1(t)� �
2(t)k2 + kW

1
t (t)�W

2
t (t)k

2

� C(kW 1
0 �W

2
0 k

2
(H1

0
)3
+ k�

1
0 � �

2
0k

2 + kW
1
1 �W

2
1 k

2);

where C depends on T and R > 0 such that E0(W
1
0 ;W

1
1 ; �

1
0) + E0(W

2
0 ;W

2
1 ; �

2
0)

< R. Therefore, the problem (2) has a unique solution (W; �) = (v; u; �) such

that W 2 C(0; T ; (H1
0 (
))

3), Wt 2 C(0; T ; (L2(
))3), � 2 C(0; T ;L2(
)).

R e m a r k 1. Theorem 1 establishes existence of a dynamical system

(X0; St) with evolution operator de�ned by St(W0;W1; �0) = (W (t);Wt(t); �(t)).

3. Global attractor

In this section we prove our main result on the existence of a compact global

attractor of the dynamical system (X0; St) generated by the problem (2). It is

known (see, for example, [5, 7]) that to prove the existence of a compact global

attractor it is su�cient to show that a dynamical system is dissipative and asymp-

totically smooth. We recall the corresponding de�nitions.

De�nition 2.

1. A bounded closed set A is said to be a global attractor of dynamical sys-

tem (X;St) if it is strictly invariant and uniformly attracts all trajectories

emanating from the bounded sets, i.e., StA = A and for any bounded set

B � X

lim
t!1

sup
y2B

dist(Sty;A) = 0:

2. A closed set C is said to be absorbing if for any bounded set B there exists

t0 = t0(B) such that St(B) � C for all t � t0. A dynamical system is said

to be dissipative if it possesses a bounded absorbing set.

3. A dynamical system (X;St) is said to be asymptotically smooth if for any

bounded set B such that StB � B for t > 0 there exists a compact set K in

the closure �B of B such that

lim
t!1

sup
y2B

dist(Sty;K) = 0:

Our main result is the following assertion.
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Theorem 2. Under assumptions (A1)-(A4) the problem (2) possesses a �nite-

dimensional compact global attractor in the space X0. Moreover,

A = M
u(N); (22)

where N is the set of stationary points of the system (X0; St), i.e., N = fz 2 X :

Stz = z for all t � 0g. The unstable manifold M
u(N) emanating from the set N

is the set of all y 2 X such that there exists a full trajectory fz(t) : t 2 Rg with

the properties

z(0) = y; lim
t!�1

distX(z(t);N) = 0:

To prove the theorem we need the following lemma.

Lemma 3. Let in addition to the hypotheses of Theorem 1 Assumption (A2)

holds. Then the dynamical system (X0; St) generated by weak solutions for (2)

possesses a bounded positive invariant absorbing set B.

P r o o f. As in Lemma 1 we de�ne a function V (t) = E(t) + "H(t) where

H(t) is de�ned by (9) and E(t) is given by (5).

dH

dt
= k�

1

2Wtk
2
� kA

1

2Wk
2
� (B�;W )

+(N(W );W ) + kK
1

2Wk
2
;

dE

dt
= �kD

1

2Wtk
2
� �
1�kr�k

2 + (KW;Wt):

Observing (A1) and (A2) for �1 and �2 large enough, we obtain

dV
dt

+ cV � �("� c
2
)kA

1

2Wk
2
� 
1(�0 �

c
2
� 2" � c"

2
)kvtk

2

�
(�1 �
c
2
� 2"� c"

2
)kutk

2
� �
1(� �

"
2
�

c
2�1

)kr�k2

+(
"(�+c+�0c)

2
+ "�1 +

�2
1

"
+ "a1�1 � �1c)
1kvk

2 + (
"(c+c�1)

2
+ "�2

+
�2
2

"
+ "a4�2 � c�2)
kuk

2
� a2"
1kvk

2+�0 � a5
"kuk
2+�0 + 
1a3"j
j

+
a6"j
j+ 
1("a1 � c)j
jb1 + 
("a4 � c)j
jb2 :

Since �0 > 0 we can choose " > 0, c > 0, and M > 0 such that

dV

dt
+ cV �M: (23)

It follows from (10) that there exists M1, M2 � 0 such that V (z(t)) �

M1kz(t)k
2
X0
�M2. This inequality and (23) prove the lemma (for details we refer

to [5, Theorem 1.4.1]).

To show that the dynamical system (X0; St) is asymptotically smooth we need

the following result.
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Lemma 4. Let z1(t) = (W 1(t);W 1
t (t); �

1(t)) and z2(t) = (W 2(t);W 2
t (t); �

2(t))

be two solutions for the problem (2) lying in the bounded absorbing set B and

�z(t) =

0
@ W

1(t)�W
2(t)

W
1
t (t)�W

2
t (t)

�
1(t)� �

2(t)

1
A =

0
@ �W (t)

�Wt(t)
��(t)

1
A :

Then there exist C1; C2; k1; k2 > 0 such that

E0(�z(T )) � C1e
�k1TE0(�z(0)) + C2e

k2T max
0�t�T

k �W (t)k2 (24)

for all T � 0.

P r o o f. We use the representation of weak solutions for nonlinear problem

(2):

St(�z(0)) = U(t)�z(0) +
tR
0

U(t� �)(0; (�
1rv�(v
1(�)) + 
1rv�(v

2(�))

+
1�1�v(�); 
F (u1(�))� 
F (u2(�)) + 
�2�u(�)); 0)d�;

where U(t) is the evolution operator of the problem (6) with G � 0 (see Lemma 1).

Observing Lemma 1, we have

E0(�z(T )) � c1kST (�z(0))k
2
� c2e

�2cT
E0(�z(0))

+c3(
TR
0

e
�c(T��)(krv�(v

1(�)) �rv�(v
2(�))k + kF (u1(�))

�F (u2(�))k + k �W (�)k)d�)2:

Using Cauchy�Schwarz inequality, the interpolation inequality k �W (�)k2
(H�)3

�

"k �Wk
2
(H1

0
)3
+C(")k �W k

2 (where 0 < � < 1 and the perameter " > 0 can be chosen

arbitrary small) and the fact that
TR
0

e
�2c(T��)

d� = 1
2c
(1� e

�2cT ) � 1
2c
, we get the

following estimate:

E0(�z(T )) � c2e
�2cT

E0(�z(0)) + c4

TR
0

e
�2c(T��)

d�

TR
0

(k �W (�)k2
(H�)3

+k �W (�)k2)d� � c2e
�2cT

E0(�z(0)) + c5"

TR
0

E0(�z(�))d� + c6

TR
0

k �W (�)k2d�:

Gronwall's lemma yields

E0(�z(T )) � c2e
�T (2c�c5")E0(�z(0)) + c6e

"c5T
TR
0

k �W (�)k2d�: (25)
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Choosing " small enough, we conclude from (25) the statement of the lemma.

P r o o f o f T h e o r e m 2. To prove the theorem we use the following

result from [9]:

Theorem 3 (I. Chueshov�I. Lasiecka). Let (X;St) be a dynamical sys-

tem on a complete metric space X endowed with a metric d. Assume that for

any bounded positively invariant set B in X there exists T > 0, a continuous

nondecreasing function q : R+ ! R+ and a pseudometric �TB on C(0; T ;X) such

that:

(i) q(0) = 0, q(s) < s; s > 0;

(ii) the pseudometric �
T
B is precompact (with respect to X) in the following

sense: any sequence fxng � B has a subsequence fxnkg such that the sequence

fykg � C(0; T ;X) of elements yk(�) = S�xnk is Cauchy with respect to �
T
B;

(iii) the following inequality holds

d(ST y1; ST y2) � q(d(y1; y2)) + �
T
B(fS�y1g; fS�y2g)

for every y1; y2 2 B, where we denote by S�yi the element in the space C(0; T ;X)

given by function yi(�) = S�yi. Then (X;St) an asymptotically smooth dynamical

system.

We can rewrite (24) as follows

k�z(T )kX0
� Ce

�k1T
k�z(0)kX0

+ �
T (fz1(t)g; fz2(t)g);

where �T (fz1(t)g; fz2(t)g) = Ce
k2T max

0�t�T
k �W (t)k is a precompact pseudometric

by the compactness of embedding (L2(0; T ; (H1
0 (
))

3) \H1(0; T ; (L2(
))3))

� C(0; T ; (L2(
))3) and ki > 0; i = 1; 2. Select T large enough for Ce�k1T to be

less then 1. Choosing X = X0, d(y1; y2) = ky1 � y2kX0
, q(s) = Ce

�k1T s, we get

that the dynamical system (X0; ST ) is asymptotically smooth and with Lemma 3

this gives [5] existence of a compact global attractor A.

Now prove that the global attractor has a �nite fractal dimension. It follows

from (24) that

2TR
T

E0(�z(t)) �
C1

k1
e
�k1TE0(�z(0)) +C3max

[0;T ]
k �W (t)k2; (26)

where C3 > 0. Similar to [10] we de�ne a space X = X0 � X1 (where X0 =

(H1
0 (
))

3
�(L2(
))3�L2(
) andX1 = (L2(0; T ; (H1

0 (
))
3)\H1(0; T ; (L2(
))3))�

L
2(0; T ;L2(
))) equipped with the norm

kZk
2 = kz(0)k2X0

+ 2

TZ
0

E0(z(t))dt;
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where Z = (z(0); z(t)) and T > 0 will be determined later. On the space X we

de�ne a compact (by the compactness of the embedding (L2(0; T ; (H1
0 (
))

3) \

H
1(0; T ; (L2(
)))3) � C(0; T ; (L2(
))3)) seminorm

nT (Z) = max
0�t�T

kW (t)k:

Next we consider the set

AT = fZ = (z(0); z(t)); t 2 [0; T ] : z(0) 2 Ag:

The operator VT : AT ! X is de�ned by the formula VT : (z(0); z(t)) !

(z(T ); z(t+ T )). Now we will verify that VT is Lipschitz continuous on AT . From

(8) and Gronwall's lemma we have

E0(z(t)) � E0(z(s))e
aR(t�s); 0 � s � t; (27)

or after setting t = T + s and integrating from T to 2T , we get

2TZ
T

E0(z(s))ds � e
aRT

TZ
0

E0(z(s))ds: (28)

Observing

1
2
kZ1 � Z2k

2
X = E0(�z(0)) +

TR
0

E0(�z(t))dt;

1
2
kVTZ1 � VTZ2k

2
X = E0(�z(T )) +

2TR
T

E0(�z(t))dt;

we get from (27) and (28) the Lipschitz property for VT . From (24) and (26) we

conclude that

kVTZ1 � VTZ2kX � �T kZ1 � Z2kX + C4[nT (Z1 � Z2) + nT (VTZ1 � VTZ2)]

for all Z1; Z2 2 AT , where �T = C5e
�k1T and C4 > 0, C5 > 0. We can select T

large enough and " small enough to obtain �T < 1. Therefore, all conditions of

the Theorem 2.3 in [10] are satis�ed and, therefore, dimX
fracAT <1. This implies

that dimX0

frac
A <1 .

To prove (22) it is enough to show that the functional 	(z(t)) = E(z(t)) �
1
2
kK

1

2W (t)k2 is the strict Lyapunov function for (X0; St), i.e., it is continuous and

t 7! �(Sty) is nonincreasing for any y 2 X0 and the equality 	(St0y) = 	(y) for

some t0 > 0 and y 2 X0 implies that Sty = y for all t � 0. Indeed, it is obvious
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that �(z) is continuous on X0. From (4) it follows that it is nonincreasing. If

	(z(t0)) = 	(z(0)) then

t0Z
0

kD
1

2Wtk
2
dt+

t0Z
0

kr�k
2
dt = 0:

Therefore, Wt = 0 and r� = 0 for t 2 [0; t0]. By the Friedrichs inequality � � 0.

Hence,W (t) = ~W , �(t) = 0 is the stationary solution for (2). Now the existence of

a strict Lyapunov function implies (see, e.g., [5, Theorem 1.6.1]) that A = M
u(N)

and Theorem 2 is proved.

R e m a r k 2. In the case 
 = 
1 = 0 corresponding to two-dimensional

thermoelasticity we denote W = v, operators �; D;K : (L2(
))2 ! (L2(
))2 are

as follows

� = I; D = �0I; K = 0;

where I is the identity on (L2(
))2, B� = �r� and

A0 = A =

�
���+ �0 � �@

2
1 ��@1@2

��@1@2 ���+ �0 � �@
2
2

�
:

A0 is a selfadjoint operator with the domain D(A0) = (H2(
) \ H
1
0 (
))

2 and

the estimate (A0v; v) � �krvk
2 + �0kvk

2 + �kdiv vk2 holds. As in Lemma 1 we

de�ne a function V (t) = E0(t) + "H(t), where H(t) = (v; vt) +
�0
2
kvk

2, E0 =

1
2
kvtk

2 + 1
2
kA

1

2

0 vk
2 + �

2
k�k

2 and 0 < " < �0. For every c > 0 we have

dV
dt

+ cV � �(�0 � "�
c
2
�

c"
2
)kvtk

2
�

1
2
("� c)kA

1

2

0 vk
2

�"(�0
2
�

c
2
�

c�0
2
�

p
"�

2
)kvk2 � �(� �

p
"

2
�

c
2�1

)kr�k2 � 0;

which gives us exponential stabilization of the linear semigroup. Similarly, for

nonlinear problem we obtain, that for the function V (t) = E(t) + "H(t) (where

E(t) = 1
2
kvtk

2 + 1
2
kA

1

2

0 k
2 + �

2
k�k

2 +
R



�(v)dx) the following estimate holds for

some M > 0:

dV
dt

+ cV � �(�0 � "�
c
2
�

c"
2
)kvtk

2
� ("� c

2
)kA

1

2

0 vk
2 + "( c

2
+ c�0

2
+ "�

2
+ �1a1

�
�1c
"
)kvk2 � �(� � "

2
�

c
2�1

)kr�k2 � "a2kvk
2+�0 + ("a3 + ("a1 � c)b1)j
j �M:

A suitable Lyapunov function for this system is 	(z(t)) = E(z(t)).

From it follows that Theorem 2 also takes place in the case of two-dimensional

thermoelasticity.
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