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We consider the relationship between the number of separated maxi-
mum modulus points and the Eremenko’s value b(oo, f) for meromorphic
functions.

Let v(r, g) denote the number of maximum modulus points of an entire func-
tion g(z) on the circle |z| = r. In 1964 P. Erdos set up the question whether it
is possible to find an entire function g(z) # cz™ with v(r,g) unbounded. In 1968
F. Herzog and G. Piranian [10] gave a positive answer to this question. They
constructed an entire function g(z) with v(r,g) — oo for r — oo.

In this paper we present an upper estimate of the number of separated max-
imum modulus points for meromorphic functions. We shall use the standard
notations of value distribution theory: m(r,a, f), N(r,a, f) and T(r, f) [8]. Let
f(2) be a meromorphic function.

Let’s set L(r, 00, f) = maxlog™ |f(2)|, L(r,a,f) = L(r,00, +). The quan-

J2l=r I

e L(ray f)
Bla, f) = hggglfw
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On the separated maximum modulus points of meromorphic functions

is called Petrenko’s magnitude of deviation of meromorphic function f(z) at point a.

V.P. Petrenko in [13] obtained a sharp upper estimate of the magnitude of devi-
ation of meromorphic functions of finite lower order A = lim inf%.
rT—00

Theorem A. If f(2) is a meromorphic function of finite lower order X\, then
for each a € C

A ,
i A<0.5
< sin T\ ’Lf — )
Bla,f) < { TA if A>0.5.

We now introduce the quantities which count the number of separated maxi-
mum modulus points of a meromorphic function f(z) on the circle |z| = r. For
0 <n <1andr >0 we denote by p,(r, 00, f) the number of component intervals
of the set

{0 :In|f(re”)| > (L= n)T(r, )}

possessing at least one maximum modulus point of the meromorphic function f(z).
Moreover, we set p;, (oo, f) = liminfp,(r, 0o, f) and p(oco, f) = sup p,(oco, f).
r—00 {n}
In [3] the authors obtained the following estimate of the value p(oo, f) through

Petrenko’s magnitude of deviation (oo, f).

Theorem B. For meromorphic functions f(z) of finite lower order X\ the
following inequality is true:

e o (2] 1)

where [x] means the entire part of the number x.

For entire functions (o0, g) > 1, which leads us to the following conclusion.

Corollary B. For entire functions g(z) of finite lower order A\ we have

p(00,9) < max ([2wA],1) .

In case of meromorphic functions of infinite lower order the quantity 3(a, f)
may be infinite, so we apply the following result of Bergweiler and Bock [2].

Theorem C. If f(z) is a meromorphic function of infinite lower order, then

liminfiﬁ(r,’oo’f) <m,
r—oo T (r, f)

where T (r, f) is the left derivative of Nevanlinna’s characteristic function.
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We have rT"_(r, f) = A(r, f) + O(1), where A(r, f) means the spherical area
covered by the image of the disc {z : |z] < r} under f(z), divided by the area of
the Riemann’s sphere. In connection with this equality and the above theorem
A. Eremenko introduced the quantity

_ i L f)
b(a, f) = ll}'f_l}loglfm
In [5] he proved the following estimate for b(a, f).

Theorem D. For a meromorphic function f(z) of lower order A, 0 < XA < oo,
and for a € C we have

ba, f) < {

T if 1< \< oo,
n 1
2

sin A

In case of n = 1 one of the authors in [12] obtained the upper estimate of
p1(0o, f) through b(oo, f). Our main result is the upper estimate of p(oo, f)
through b(oco, f) for meromorphic functions.

Theorem 1. For a meromorphic function f(z) of lower order X\, where
0 <A< o0, and for 0 <n <1 we have

poloo, f) < max{l’ [(2 _n)l)(Tw,f)] }

Corollary 1. For a meromorphic function of lower order A, 0 < XA < 0o we

have
]}

1. Auxiliary results

For 0 < n <1 let’s consider the function

uy (2) = max(log | f(2), (1 —n)T(|z], ),
where f(z) is a meromorphic function in C.

Lemma 1. The function uy,(2) is a d-subharmonic function in C.

Proof. Let gi(z) and g2(2) be entire functions without common zeros such

that f(z) = 4

uy(2) = max(log [91(2)| —log |g2(2)|, (1 = )T (2], f))

—

. Then we can write

~|

220 Matematicheskaya fizika, analiz, geometriya , 2005, v. 12, No. 2



On the separated maximum modulus points of meromorphic functions

= max(log|g1(2)], (1 = n)T (2|, f) + log|g2(2)]) — log|ga(2)].

The characteristic function T'(r,f) is a nondecreasing and convex func-
tion of logr for » > 0, hence the function T'(|z|, f) is a subharmonic func-
tion in C [14|. Therefore u,(z) is a difference of two subharmonic functions:

Ui(z) = max(loglgi(2)], (1 — n)T'(|z], f) + loglg2(2)|) and Ua(z) = log|ga(2)].
This completes the proof of Lemma 1.

For a complex number z = re' let’s put [1]

1 )
m*(r,0,uy) = sup — [ u,(re'?)dep,
|E|=20 7TE

T*(Ta 97“7]) = T*(Tew) = m*(rv 97“7]) + N(’)”, 00, f)7

where r € (0,00), 0 € [0,7], |E| is the Lebesgue’s measure of the set E and
N (r, 00, f) is the Nevanlinna’s counting function. Let’s put @, (z) for the circular
symmetrization of the function wu,(2) [9]. The function @, (re*?) is nonnegative and
nonincreasing on the interval [0, 7], even in ¢ and for each fixed r equimeasurable
with w,(re’?). Moreover, it satisfies the relations:

iy (r) = max(log max|f(2)|, (1 = n)T(r, f)),

z|=r
Uy (re'™) = i, (—r) = max(log IZI‘11:1;|f(z)|’ (1 —n)T(r, f)),
m*(r,0,uy) = sup % Iz un(rew) do = %fog ﬂn(Tei‘p)dQO.
\E|=20

From Baernstein’s theorem [1| the function T%(r, 6, u,) is subharmonic in
D={re?:0<r<o0,0<6<n},

continuous in DU (—o0,0) U (0, 4+00) and logarithmically convex in r > 0 for each
fixed 6 € [0, 7]. Furthermore:

T*(r,0,u,) = N(r,00, f),

T*(Ta T, un) S (2 - U)T(T, f)a

%T*(r,@,un) = ﬂ"(:relg) for 0 < 0 < m,
where T'(r, f) is the Nevanlinna’s characteristic function of f(z).

Let a(r) be a real-valued function of a real variable r and

h —hy _
La(r) = lihm iélfa(re )+ 04(;; ) 2a(7").
.

When «(r) is twice differentiable in r, then

In [3] the authors obtained the following result.
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Lemma 2. For all 0 < n < 1 and for almost all 0 € [0, 7] and for all v > 0
such that on the set {z : |z| = r} the meromorphic function f(z) has neither zeros
nor poles we have

(.00, f) iy (rei)

* >
LT*(r,0,uy) > - 90

W. Bergweiler and H. Bock in 2] introduced a generalization of Polya peaks
[4] to functions of infinite lower order. Let’s remind the basic facts of this con-

struction.
For all sequences M; — 00, €; — 0 there exist sequences p; — 0o and p1; — o0
such that, for all r’s fulfilling the inequality | log(pij)| < Af—jj, we have
r O\ M
7)< (14 e) (=) TG0 )
j

We can choose the sequences p; and M; such that

nj = o(log> T(pj, f)), M; = o(log T(pj, f)), i — .

Let’s put

_My My
Pj=pje ", Qj=pje"i.
Then the inequality (1) is true for all » € [P}, Q;]. We shall assume that M; > 1.
Let’s consider the sets

IN

a={r el = (p—])“ Tl 1)}

B ={remanlren<— (L) 160},

VHi \Pj
Let’s put
min A;, if A; #0, max Bj, if Bj #0,
Rj = e = e (2)
Qj, if A; =0, P; if B; =0,
_1 _2
Sj=e "M R;j, Tj=e " R,
Then

t; <pj <Tj; <8S; <R;.
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In [2] it is shown that

T}
M0 100 |, (100,

RM tHi rHit1 ’
j j

J — oo. (3)

tj
Apart from that, it follows from the inequality (19) in [2] that

T(pj, ) < T3 (t;,f), J — oo.

In order to prove our main results we shall need several additional lemmas.

Lemma A [13]. Let f(z) be a meromorphic function of finite lower order .
Then there exist sequences Sy, Ry tending to infinity such that Lim St —

ke~ o0 Ttk
and for each e > 0, for all k > ko(e) we have
CR.f) | T@Sns) _ [ T
T(2Ry, T (25}, T(r,
o) ) <e / A dr.
k k 25,
Let’s define new quantities
A A A
h(r, A, p) := L(r, 00, f) cos M 7T—T*(r, @, uy) sinM

p p p

Ao+ )

A
—i—%N(r,oo,f)sin?w — Gy (7, o) cO8s ——,

hn(’l", >‘) = h(’f’, Aapn (OO, f))
The inequality, that we present as a lemma below, was proved in [3].

Lemma B. Let f(z) be a meromorphic function of finite lower order \. Then
for 0 < a < min(ﬂ',%io’f)) and —%io’f) <y < %?\o’f) — «, we have the
asymptotic inequality

Rkh( A T (r, f)
(7, T(r,
/ e dT<6/ ] dr, k — oo,

25}, 25,

where Sy, and Ry, are the sequences from lemma A.

The following lemma is an analogue of lemma B for meromorphic functions of
infinite lower order.
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Lemma 3. Let f(z) be a meromorphic function of infinite lower order
Then for such numbers p that 1 < p < max{l,py(oc0, f)}, 0 < o < min{nw, 5-

< — o we have
<y

72u

where T and t; were defined in (2).

Proof. Let’sput |11, 6, 7]
o

o(r)= /T*(r,ﬁ,un)cos

0

1 (60 + ) 40
P

Applying Lemma 2, the fact that LT*(r,0,u,) > 0 and Fatou’s lemma, we obtain
that for almost all r > rq

’I"—’I"O'

a ~
dr (r) > _/Pn(TOO,f) Oty (1, 6) cos (0 + zp)de

s 00 P
0

After applying integration by parts to the right side of the above inequality we
have

d
rrol (r) > p*hir, pjp) + 2o (r).

We divide this inequality by r#*! and integrate it over an interval [t, T}].

T T; T;
1 d o [ h(r,ps,p) 2 a(r)
TT]%TU ( )dT zp /Wd'f"i‘/l] 7‘“1+1 dr. (5)
t tj tj

Integrating by parts the left side of (5) and applying the monotonicity of ro’ (r),
we obtain

J

T;
h(r, 115, p) o (r)  o(r)\["
2 Yy M) .
p/ 'rﬂj‘i‘l dTS rﬂjfl +MJ rHj ¢
t]‘ J

The definition of o(r) implies that

(6)

(2—n)p

o(r) < i

T(r, f).
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Since ro’ (r) is monotonically increasing on [tj,7}], we have

Sj
o
o(Sj) — o(Tj) = /U'—(T)dr > Tjo' (Tj) log 5 —Tjol(Tj).
J Ty oy
J

Hence

Tjo' (Tj) < njo(S;) < (2 —n)pT(S;, f).
Apart from that, for all » > 1 we have ro’ (r) > o’ (1). Now, applying (6) and
(3), we obtain

T
h(r, 1j,p) 22 —n)pT(S;, f) (1)
2 iRl 7
p / mTES RS T T
tj
T
2(2 — n)pe’T(Ry, f) ,
< R;'LJ + t“] / r“J‘H nol e

This completes the proof of Lemma 3.

2. Main result

In this section we present the proof of Theorem 1.

If b(oo, f) = 0 or py (0o, f) = 0 then the statement is obviously true. Therefore
let’s take b(oo, f) > 0. Then also p(oo, f) > 0.

First we shall prove the statement for meromorphic functions of finite lower
order . We consider the case when p(oo, f) < co. For XA > 0 we have

Ry, Ry,
[TeDy IO TN L frTeD),

A A2 ) ARY A P
25}, 25},

Thus, applying lemma A, we obtain

[ 76.p) [ Awp)
T(r, 1+¢ 7,
/ e dr < 3 / pyes) dr, k — oo. (7)
25y 25
Let’s first assume that (Oo i % Then ”p"éio’f) < m. In Lemma B we put

a:m’”( 00.f) , ¥ =0. Then, as k — o0

Ry, Ry,
L(r, 00, f) T T(r, f)
25/ 77“” dr < (r(oo,f)@ —n) +8>25/ e dr.
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Inserting (7) into this inequality, we obtain

Ry, Ry,
L(r, 00, f) 1 A Alr, f)
25/ 77‘)\_'_1 d'f’<x(1+6) (m(2_n)+5>25/ Wd?", k — oo.

Therefore there exists a sequence 1y € [2Sk, Ry] such that

< 1 [ T
>‘ pn(ooaf)

Passing to the limit with £ — oo and € — 0, we obtain

T

— (2.

pn(OO, f)

This leads us to the statement in this case, as p, (oo, f) takes only integral values.
Let’s now assume that —2— < % Then 7 < w. In the definition of

L(rg, 00, f) (2—77)+8] (1+e)A(rg, f), k — oo.

b(o0, f) <

pn(OO,f)
hy(r, A) we put @ = 7 and ¢ = 0. Thus

TA TA TA
hy(r,\) = L(r,00, f) — —————=T*(r, 7, up) Sin ———— — @, (1, 7) COS ——— .
o A) =Ll ) =t T ) sin sy T I s e )

If py(oco, f) = 1 then the statement is obvious. Let then p, (oo, f) > 2. Then we
have

hn(r, >‘)
TA TA TA
= L(r,00,f) — ———=T"(r, 7, uy) sin —— — (1 —n)T(r, f) cos ———.
(oo f) = o T ) sin gy~ T s )
This leads us to inequality
Ry,
L(r, o0, f)
/ — a1 dr
25},
R s M s T
g hﬂ(ra A)+(2 - n)pn(og,_f)T(Ta f)sin pn(o;\,f) + (L =n)T(r, f)cos p,,(oé,f)
< X dr.
25
Applying lemma B, we get
Ry,
L(r, o0, f)
/ ] dr
25},
A A A 7160
s s s T(r
<[(2 — sin + (1 —1n) cos +6/ 2l
e ey T T ey T ) T
k
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Inserting (7) into this inequality, we obtain

Ry,

L(r, 00, f)
/ — A dr
25,
(1+9) A A A T A6, §)
1+e¢ T . s ’ / )
< 2 — sin +(l—mn)cos —— +¢ dr.
T e T T e T T
k
Therefore there exists a sequence 1y, € [2Sk, Ri| such that
A TA
AC(rp,00, f) < (14+e)[(2—n)———— + (1 —n)cos —— + ¢|A(rg, ).
(100, £) < (14 €)[(2 = )P o (1 = 1) cos s+ A1, )

As the above inequality holds for any A > 0 such that W < we have

L(rk, 00, f) B A
Ay @

Passing to the limit with £k — oo and € — 0, we obtain the statement in this case.
The proof for p(oco, f) = 0o can be conducted similarly [11].

A +¢].

We now consider the case when f(z) is a meromorphic function of infinite
lower order. Let p, (oo, f) > 1 and let p be the number from Lemma 3. We take
jo such that for j > jyo we have (4) and “% < 1. In Lemma 3 we put 1 = 0 and

o = 22 Then we have
245

TG s
h(’f’, lf'jap) = ﬁ('f’,OO,f) - %T (Ta aaun)a

and
1 1 Mj *
E’I"OO f h?”/l,],p T (’raaaun)d
7-#]+1 rﬂj+1 "
tJ tJ

Since T*(r,0,u,) < (2 —n)T(r, f) for all 8 € [0, 7]

T:

T; _—
J[,(r,oo,f) Jh,(’l“,,u,j,p)—i-%(Q—ﬂ)T(’)”,f)
————dr < : dr.
r“]‘i‘l TH]+1
tj tj
Hence, on the basis of Lemma 3
Tj T
L(r, 00, f) :
tj
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Using integration by parts and applying (3), we obtain

T; T;

J J
T(r,f) T(t;, f)  T(Ty,f) rT.(r, f)
/’l’]/ ,r.uj—l—l d'f’ = tﬂ] - T“] +/ ,r.uj—l—l d’)"
J J
T
A(r, f)
<(1+6)/ e dr, j— o0
tj
Thus
T T
L(r, 00, f) m A(r, f) .
/Wdr< E(Z—n)—i—e (1+6)/ pTPRs dr, j — oo.
tj tj
Therefore there is such a sequence r; € [t;,T}] that
T
Llrgoo.f) < 2@ =) +2| (14 940 ) )
M.

_J
The definition of the sequence (¢;) implies that t; > P; = pje *i where p; — oo,

M . The sequence P; — oo as j — oo. Thus £; — oo and r; — oo as j — 0.

From the definition of b(oo, f) and from (8) we get

boor 1) < |2 =) +e| (1+2)

As it is true for any € > 0, therefore for all numbers p such that 1 < p < py(oo, f)
we have

b(oo, f) < —(2—mn). (9)

If py(o0, f) < oo then, putting in (9) p = py(o0, f), we obtain the statement. If,
on the other hand, py,(co, f) = co then the inequality (9) is true for all numbers
p > 1. Hence in this case b(oco, f) = 0. This completes the proof of Theorem 1.

=
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