Geometric realizations for some series of representations of the quantum group SU2,2

  • D. Shklyarov
  • S. Sinel'shchikov
  • L. Vaksman

Анотація

The paper solves the problem of analytic continuation for the holomorphic discrete series of representations for the quantum group $SU_{2, 2}$. In particular, a new realization of the ladder representation of this group is produced. Besides, q-analogues are constructed for the Shilov boundary of the unit ball in the space of complex 2x2 matrices and the principal degenerate series representations of $SU_{2, 2}$ associated to that boundary. A possibility is discussed of transferring some well known geometric constructions of the representation theory to the quantum case: the Penrose transform, the Beilinson-Bernstein approach to the construction of Harish-Chandra modules (for the case of the principal nondegenerate series).

Downloads

Як цитувати

(1)
Shklyarov, D.; Sinel’shchikov, S.; Vaksman, L. Geometric realizations for some series of representations of the quantum group SU2,2. Мат. физ. анал. геом. 2001, 8, 90-110.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.