Guantum matrix ball: the Cauchy-Szegö kernel and the Shilov boundary
Анотація
This work produces a q-analogue of the Cauchy-Szegö integral representation that retrieves a holomorphic function in the matrix ball from its values on the Shilov boundary. Besides that, the Shilov boundary of the quantum matrix ball is described and the $U_q\mathfrak{su}_{m,n}$ - covariance of the $U_q\mathfrak{s}(\mathfrak{u}_m\times\mathfrak{u}_n)$ - invariant integral on this boundary is established. The latter result allows one to obtain a q-analogue for the principal degenerate series of unitary representations related to the Shilov boundary of the matrix ball.
Downloads
Як цитувати
(1)
Vaksman, L. Guantum matrix ball: the Cauchy-Szegö kernel and the Shilov boundary. Мат. физ. анал. геом. 2001, 8, 366-384.
Номер
Розділ
Статті
Завантаження
Дані завантаження ще не доступні.