Upper semicontinuity of attractors of semilinear parabolic equations with asymptotically degenerating coefficients

  • I. D. Chueshov
  • L. S. Pankratov

Анотація

The initial boundary value problem for semilinear parabolic equation $$\frac{\partial u^\varepsilon}{\partial t}-\displaystyle\sum_{i,j=1}^n\frac{\partial}{\partial x_i}\left(a^\varepsilon_{ij}(x)\frac{\partial u^\varepsilon}{\partial x_j}\right)+f(u^\varepsilon)=h^\varepsilon(x), x\in\Omega,t\in (0,T);$$ with the coefficients $a^\varepsilon_{ij}(x)$ depending on a small parameter $\varepsilon$ is considered. We suppose that $a^\varepsilon_{ij}(x)$ have an order $\varepsilon^{3+\gamma}$ ($0\le\gamma<1$) on a set of spherical annuli $G^\alpha_\varepsilon$ having the thickness $d\varepsilon^{2+\gamma}$. The annuli are periodically (with a period $\varepsilon$) distributed in $\Omega$. On the remaining part of the domain these coefficients are constants. The asymptotical behavior of the global attractor $\mathcal{A_\varepsilon}$ of the problem as $\varepsilon\to 0$ is studied. It is shown that the global attractors $\mathcal{A_\varepsilon}$ tend in a appropriate sense to a weak global attractor $\mathcal{A}$ of the homogenized model as $\varepsilon\to 0$. This model is a system of a parabolic p.d.e. coupled with an o.d.e.

Downloads

Як цитувати

(1)
I. D. Chueshov, L. S. Pankratov, Upper semicontinuity of attractors of semilinear parabolic equations with asymptotically degenerating coefficients, Мат. физ. анал. геом. 6 (1999), 158-181.

Номер

Розділ

Статті

Завантаження

Дані завантаження ще не доступні.