Approximation of subharmonic functions of slow growth
Анотація
Let u be a subharmonic function in ℂ , mu its Riesz measure. Suppose that C1≤m({z : R < |z| ≤ Ry (R)} ≤ C2(R ≥ R1) for some positive constants C1, C2, and R1, and a slowly growing to +¥ function y(r) such that r/y(r) ↗ +¥ (r®+¥). Then there exist an entire function f, constants K1 = K1(C1; C2), K2 = K2(C2) and a set E Ì ℂ such that|u(z)-log|f(z)||≤K1logy(|z|), z®¥, z∉ E,
and E can be covered by the system of discs Dzk (rk) satisfying
,
as R2® +¥. We prove also that the estimate of the exceptional set is sharp up to a constant factor.
Downloads
Як цитувати
(1)
Chyzhykov, I. Approximation of subharmonic functions of slow growth. Мат. физ. анал. геом. 2002, 9, 509-520.
Номер
Розділ
Статті
Завантаження
Дані завантаження ще не доступні.