A sharp inequality for the order of the minimal positive harmonic function in T-homogeneous domain
Анотація
Let $G$ be a simply connected domain in $\mathbb{C}$ which is $T$-homoheneous, i.e., $TG=G$ for some $T>0$. Let $\rho(G)$ be the order of the minimal positive harmonic function in $G$. We prove that a kind of symmetrization of $G$ and prove that it does not increase $\rho(G)$. This implies a sharp lower bound for $\rho(G)$ in terms of conformal modulus of a quadrilateral naturally connected with $G$.
Downloads
Як цитувати
(1)
Azarin, V.; Gol՚dberg A. A sharp inequality for the order of the minimal positive harmonic function in T-homogeneous domain. Мат. физ. анал. геом. 2004, 11, 375-379.
Номер
Розділ
Статті
Завантаження
Дані завантаження ще не доступні.