Averaging technique in the periodic decomposition problem

  • V. M. Kadets
  • B. M. Shumyatskiy

Анотація

Let T_1, T_2 be a pair of commuting isometries in a Banach space X. Generalizing results of M. Laczkovich and Sz. Revesz we prove that in many cases element x of \textrm{Ker}[(\textrm{I}-\textrm{T}_1)(\textrm{I}-\textrm{T}_2)] can be decomposed as a sum x_1+x_2 where x_k\in \textrm{Ker}(\textrm{I}-\textrm{T}_k), k=1,2. Moreover, using an averaging technique we prove the existence of linear operators perfoming such a representation. The results are applicable for decomposition of functions into a sum of periodic ones.

Downloads

Як цитувати

(1)
V. M. Kadets, B. M. Shumyatskiy, Averaging technique in the periodic decomposition problem, Мат. физ. анал. геом. 7 (2000), 184-195.

Номер

Розділ

Статті

Завантаження